首页 | 本学科首页   官方微博 | 高级检索  
     


Improving disease incidence estimates in primary care surveillance systems
Authors:Cécile?Souty  author-information"  >  author-information__contact u-icon-before"  >  mailto:cecile.souty@upmc.fr"   title="  cecile.souty@upmc.fr"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Clément?Turbelin,Thierry?Blanchon,Thomas?Hanslik,Yann?Le Strat,Pierre-Yves?Bo?lle
Affiliation:1.INSERM, UMR_S 1136,Institut Pierre Louis d’Epidémiologie et de Santé Publique,Paris,France;2.Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136,Institut Pierre Louis d’Epidémiologie et de Santé Publique,Paris,France;3.AP-HP, H?pital Ambroise Paré,service de médecine interne,Boulogne-Billancourt,France;4.Université Versailles Saint-Quentin-en-Yvelines,Versailles,France;5.Institut de Veille Sanitaire (InVS), St Maurice,Département des maladies infectieuses,France;6.AP-HP, H?pital Saint-Antoine,unité de santé publique,Paris,France
Abstract:

Background

In primary care surveillance systems based on voluntary participation, biased results may arise from the lack of representativeness of the monitored population and uncertainty regarding the population denominator, especially in health systems where patient registration is not required.

Methods

Based on the observation of a positive association between number of cases reported and number of consultations by the participating general practitioners (GPs), we define several weighted incidence estimators using external information on consultation volume in GPs. These estimators are applied to data reported in a French primary care surveillance system based on voluntary GPs (the Sentinelles network) for comparison.

Results

Depending on hypotheses for weight computations, relative changes in weekly national-level incidence estimates up to 3% for influenza, 6% for diarrhea, and 11% for varicella were observed. The use of consultation-weighted estimates led to bias reduction in the estimates. At the regional level (NUTS2 level - Nomenclature of Statistical Territorial Units Level 2), relative changes were even larger between incidence estimates, with changes between -40% and +55%. Using bias-reduced weights decreased variation in incidence between regions and increased spatial autocorrelation.

Conclusions

Post-stratification using external administrative data may improve incidence estimates in surveillance systems based on voluntary participation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号