Randomized approximate nearest neighbors algorithm |
| |
Authors: | Jones Peter Wilcox Osipov Andrei Rokhlin Vladimir |
| |
Affiliation: | Yale University, A. K. Watson Hall, 51 Prospect Street, New Haven, CT 06511, USA. |
| |
Abstract: | We present a randomized algorithm for the approximate nearest neighbor problem in d-dimensional Euclidean space. Given N points {x(j)} in R(d), the algorithm attempts to find k nearest neighbors for each of x(j), where k is a user-specified integer parameter. The algorithm is iterative, and its running time requirements are proportional to T·N·(d·(log d) + k·(d + log k)·(log N)) + N·k(2)·(d + log k), with T the number of iterations performed. The memory requirements of the procedure are of the order N·(d + k). A by-product of the scheme is a data structure, permitting a rapid search for the k nearest neighbors among {x(j)} for an arbitrary point x ∈ R(d). The cost of each such query is proportional to T·(d·(log d) + log(N/k)·k·(d + log k)), and the memory requirements for the requisite data structure are of the order N·(d + k) + T·(d + N). The algorithm utilizes random rotations and a basic divide-and-conquer scheme, followed by a local graph search. We analyze the scheme's behavior for certain types of distributions of {x(j)} and illustrate its performance via several numerical examples. |
| |
Keywords: | data mining dimensionality reduction fast random rotations |
本文献已被 PubMed 等数据库收录! |
|