首页 | 本学科首页   官方微博 | 高级检索  
     


Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density mask
Authors:Kauczor H U  Heitmann K  Heussel C P  Marwede D  Uthmann T  Thelen M
Affiliation:Department of Radiology, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
Abstract:
OBJECTIVE: We compared multiple neural networks with a density mask for the automatic detection and quantification of ground-glass opacities on high-resolution CT under clinical conditions. SUBJECTS AND METHODS: Eighty-four patients (54 men and 30 women; age range, 18-82 years; mean age, 49 years) with a total of 99 consecutive high-resolution CT scans were enrolled in the study. The neural network was designed to detect ground-glass opacities with high sensitivity and to omit air-tissue interfaces to increase specificity. The results of the neural network were compared with those of a density mask (thresholds, -750/-300 H), with a radiologist serving as the gold standard. RESULTS: The neural network classified 6% of the total lung area as ground-glass opacities. The density mask failed to detect 1.3%, and this percentage represented the increase in sensitivity that was achieved by the neural network. The density mask identified another 17.3% of the total lung area to be ground-glass opacities that were not detected by the neural network. This area represented the increase in specificity achieved by the neural network. Related to the extent of the ground-glass opacities as classified by the radiologist, the neural network (density mask) reached a sensitivity of 99% (89%), specificity of 83% (55%), positive predictive value of 78% (18%), negative predictive value of 99% (98%), and accuracy of 89% (58%). CONCLUSION: Automatic segmentation and quantification of ground-glass opacities on high-resolution CT by a neural network are sufficiently accurate to be implemented for the preinterpretation of images in a clinical environment; it is superior to a double-threshold density mask.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号