首页 | 本学科首页   官方微博 | 高级检索  
     

支持向量机在早期癌症检测中的应用
引用本文:高智勇 龚健雅 秦前清 林家瑞. 支持向量机在早期癌症检测中的应用[J]. 生物医学工程学杂志, 2005, 22(5): 1045-1048
作者姓名:高智勇 龚健雅 秦前清 林家瑞
作者单位:武汉大学测绘遥感信息工程国家重点实验室 武汉430079(高智勇,龚健雅,秦前清),华中科技大学生物医学工程研究所 武汉430074(林家瑞)
摘    要:
支持向量机是在统计学习理论基础上发展而来的一种新的通用学习方法,较好地解决了有限样本的学习分类问题.在早期癌症诊断中,由于存在癌细胞缺乏、病人个体的特异性和数据本身的噪声等因素的影响,要进行非常准确的诊断是困难的.用支持向量机的分类算法,选取不同的核函数,构造了支持向量机的不同分类器,并将其应用于早期癌症诊断.非线性的支持向量机取得了较高的准确率,表明支持向量机在早期癌症的诊断中有很大的应用潜力.

关 键 词:支持向量机  模式识别  癌症检测
收稿时间:2003-10-08
修稿时间:2003-10-082004-02-23

Application of Support Vector Machine in the Detection of Early Cancer
Gao Zhiyong, Gong Jianya, Qin Qianqing, Lin Jiarui. Application of Support Vector Machine in the Detection of Early Cancer[J]. Journal of biomedical engineering, 2005, 22(5): 1045-1048
Authors:Gao Zhiyong   Gong Jianya   Qin Qianqing   Lin Jiarui
Affiliation:1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079,China; 2 .Institute of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074,China
Abstract:
Support Vector Machine (SVM) is an efficient novel method originated from the statistical learning theory. It is powerful in machine learning to solve problems with finite samples. Due to the deficiency of cancer cells, character of patient and noise in the raw data, it is very difficult to diagnose early cancer accurately. In this paper, SVM is employed in detecting early cancer and the results are encouraged compared with conventional methods. The accuracy of Non-linear SVM classifier is especially high in all kinds of classifiers, which indicates the potential application of SVM in early cancer detection.
Keywords:Support vector machine (SVM) Pattern recognition Detection of cancer  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号