首页 | 本学科首页   官方微博 | 高级检索  
     


Pathogenesis of Necrotizing Enterocolitis: Modeling the Innate Immune Response
Authors:Scott M. Tanner  Taylor F. Berryhill  James L. Ellenburg  Tamas Jilling  Dava S. Cleveland  Robin G. Lorenz  Colin A. Martin
Affiliation:Department of Pediatric Surgery, University of Alabama at Birmingham, Birmingham, Alabama;Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama;Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama;§Department of Pediatric Pathology, Children''s Hospital of Alabama, Birmingham, Alabama
Abstract:
Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in premature infants. The pathophysiology is likely secondary to innate immune responses to intestinal microbiota by the premature infant''s intestinal tract, leading to inflammation and injury. This review provides an updated summary of the components of the innate immune system involved in NEC pathogenesis. In addition, we evaluate the animal models that have been used to study NEC with regard to the involvement of innate immune factors and histopathological changes as compared to those seen in infants with NEC. Finally, we discuss new approaches to studying NEC, including mathematical models of intestinal injury and the use of humanized mice.Necrotizing enterocolitis (NEC) is a disorder characterized by intestinal necrosis in premature infants that results in significant morbidity and mortality.1 Approximately 7% of infants with a birth weight between 500 and 1500 g develop NEC.1 The pathogenesis is characterized by intestinal inflammation that can progress to systemic infection/inflammation, multiorgan failure, and death. The bowel is distended and hemorrhagic on gross inspection. On microscopic examination, signs of inflammation, mucosal edema, epithelial regeneration, bacterial overgrowth, submucosal gas bubbles, and ischemic transmural necrosis are seen (Figure 1, A–E).2Open in a separate windowFigure 1Examples of the various grades of morphological damage in hematoxylin and eosin–stained specimens. A–E: Representative samples of premature infants with necrotizing enterocolitis. A: Age-matched control from patient with jejunal atresia. B: Mild injury with hemorrhagic necrosis of mucosa and loss of villus tip architecture. C: Progressive injury with inflammatory infiltration of muscularis with complete villus destruction. D: Severe muscular and epithelial damage with complete loss of mucosa. E: Perforation with transmural necrosis with complete loss of epithelial and muscular architecture. F–J: Representative samples from intestinal injury secondary to gavage feeding in the setting of hypothermia and hypoxia in neonatal rats. F: Intact morphology, grade 0. G: Sloughing of villus tips, grade 1. H: Mid-villus necrosis, grade 2. I: Loss of villi, grade 3. J: Complete destruction of the mucosa, grade 4. Insets in F–J show higher magnified portions of the same sections, corresponding to the boxed regions. K–O: Representative images of tissue injury secondary to 60 minutes of intestinal ischemia and 90 minutes of reperfusion in 2-week-old mice. K: Sham-operated mice (no ischemia). L: Villus tip necrosis. M: Mid-villus necrosis. N: Loss of villus architecture. O: Complete loss of mucosal architecture. F–J, reprinted with permission from Nature Publishing Group.28 Scale bars = 50 μm (A–E, K–O). Original magnification, ×20 (A–O, main images, and F–J, insets).Currently the pathogenesis of NEC is believed to have multifactorial causes, including intestinal immaturity and microbial dysbiosis. Intestinal immaturity leads to a compromised intestinal epithelial barrier, an underdeveloped immune defense, and altered vascular development and tone. The compromised epithelial barrier and underdeveloped immune system, when exposed to luminal microbiota that have been shaped by formula feedings, antibiotic exposure, and Cesarean delivery, can lead to intestinal inflammation and sepsis. Despite therapeutic success in animal model systems, there are relatively few therapeutic strategies that have allowed for significantly improved outcomes in infants with NEC. Two hurdles that persist are our incomplete understanding of the developing immune system in premature infants and our inability to adequately replicate these complex factors in animal models.3,4 This review summarizes the complex intestinal immune system in premature infants and details what is known about the involvement of innate immune factors in NEC, both in animal models and in human disease.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号