Abstract: | Background: The attempts to explain the unpredictability of extent of spinal block provided by plain local anesthetic solutions have resulted in many clinical reports; however, causes of this uncertainty are as yet unknown. Recently, normal values of the human cerebrospinal fluid densities have been studied showing important interindividual variations, especially between females and males. The current study was designed to evaluate as primary endpoint the influence of cerebrospinal fluid density values on the extent of spinal block with plain bupivacaine. The ancillary endpoints were search of factors explaining the interindividual differences in cerebrospinal fluid density values reported and determination of the relation between upper extent and regression of spinal anesthesia. Methods: Sixty-four consecutive patients undergoing peripheral orthopedic surgery with spinal block were enrolled. Spinal anesthesia was performed in the lateral decubitus position with the operated side upward. Two milliliters of cerebrospinal fluid was sampled before injection of 3 ml plain bupivacaine 0.5%. The patient was immediately turned supine and remained in the horizontal position until the end of the study. Maximal sensory block level and time to sensory regression to L4 were determined for each patient enrolled. Cerebrospinal fluid and bupivacaine densities as well as cerebrospinal proteins, glucose, sodium, and chloride concentrations were measured. Results: A highly significant correlation between cerebrospinal fluid density and maximal sensory block level was found (P = 0.0004). However, this correlation was poorly predictive (R2 = 0.37). Cerebrospinal fluid density, proteins, and glucose concentrations were significantly higher in men than in women: 1.000567 +/- 0.000091 versus 1.000501 +/- 0.000109 g/ml (P = 0.014), 0.46 +/- 0.18 versus 0.32 +/- 0.13 g/l (P = 0.001), and 3.27 +/- 0.7 versus 2.93 +/- 0.5 mm (P = 0.023), respectively. A highly significant (P = 0.0004) and predictive (R2 = 0.73) inverse correlation was found between maximal upper sensory extent and sensory regression to L4. |