首页 | 本学科首页   官方微博 | 高级检索  
     


Erythropoietin prevents early and late neuronal demise through modulation of Akt1 and induction of caspase 1, 3, and 8
Authors:Chong Zhao Zhong  Lin Shi-Hua  Kang Jing-Qiong  Maiese Kenneth
Affiliation:Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan, USA.
Abstract:
Erythropoietin (EPO) modulates primarily the proliferation of immature erythroid precursors, but little is known of the potential protective mechanisms of EPO in the central nervous system. We therefore examined the ability of EPO to modulate a series of death-related cellular pathways during anoxia and free radical induced neuronal degeneration. Neuronal injury was evaluated by trypan blue, DNA fragmentation, membrane phosphatidylserine exposure, protein kinase B phosphorylation, cysteine protease activity, mitochondrial membrane potential, and mitogen-activated protein (MAP) kinase phosphorylation. We demonstrate that constitutive neuronal EPO is insufficient to prevent cellular injury, but that signaling through the EPO receptor remains biologically responsive to exogenous EPO administration. Exogenous EPO is both necessary and sufficient to prevent acute genomic DNA destruction and subsequent phagocytosis through membrane PS exposure, because neuronal protection by EPO is completely abolished by co-treatment with an anti-EPO neutralizing antibody. Through pathways that involve the initial activation of protein kinase B, EPO maintains mitochondrial membrane potential. Subsequently, EPO inhibits caspase 8-, caspase 1-, and caspase 3-like activities linked to cytochrome c release through mechanisms that are independent from the MAP kinase systems of p38 and JNK. Elucidating some of the novel neuroprotective pathways employed by EPO may further the development of new therapeutic strategies for neurodegenerative disorders.
Keywords:anoxia  apoptosis  cytochrome c  mitochondrial membrane potential  mitogen‐activated protein kinase
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号