首页 | 本学科首页   官方微博 | 高级检索  
     


Pre-adaptation, adaptation and de-adaptation to high altitude in humans: hormonal and biochemical changes at sea level
Authors:Gustave Savourey  Nathalie Garcia  Jean Pierre Caravel  Claude Gharib  Nadine Pouzeratte  Serge Martin  Jacques Bittel
Affiliation:Unité de thermophysiologie, Centre de Recherches du Service de Santé des Armées “Emile Pardé”, B.P. 87, F-38702 La Tronche Cedex, France, FR
Médecine Nucléaire CHRU Grenoble, BP 217, F-38043 Grenoble Cedex 9, France, FR
Laboratoire de Physiologie de l'Environnement, Avenue Rockefeller, F-69373 Lyon Cedex 08, France, FR
Abstract:
High altitude residence is known to modify body biochemistry and hormone status. However, the effects of such a sojourn on these status observed at sea level both immediately and later after return are not as well established as are the effects of an intermittent acclimation. The aim of this study was therefore to investigate these changes. To achieve our objectives, nine subjects received intermittent acclimation at low pressure in a barometric chamber (8?h daily for 5 days, day 1 at 4500 m, day 5 at 8500 m) before an expedition to the Himalayas. Hormonal and biochemical changes were studied using samples of venous blood taken at sea level before and after acclimation, after return from the expedition and 1 and 2 months after descent. Concentrations of thyroid hormones, adrenaline, noradrenaline (NA), hormones of hydromineral metabolism (aldosterone, renin, arginine vasopressin, atrial natriuretic peptide) as well as prolactin, cortisol, insulin and endothelin 1 were measured. Biochemical measurements made were plasma osmolality, and concentrations of glucose, total cholesterol, total proteins, pre-albumin, transferrin, complement 3C, apolipoproteins A1 and B and serum iron. Acclimation induced no alteration in hormone (except for NA with increases of about 1.5, fold P<0.05) and biochemistry data. After the expedition, hormone responses were characterized by a higher total triidothyronine concentration (+18%, P<0.05) while other hormones did not vary. A linear relationship was found between thyroid-stimulating-hormone and body mass changes after the expedition (r=0.67, P<0.05). The observed increased concentrations of plasma proteins and total cholesterol (P<0.05) could be related to the restoration of lean body mass. At 1 and 2 months after return, no changes in hormones were observed but a significant decrease in transferrin concentration was noticed. The higher serum iron concentration reported after 1 month (P<0.05) could have been the result of a physiological haemolysis. It was concluded that both acclimation and the expedition in the Himalayas affected hormone status and body biochemistry status even though the observed changes were slight and rapidly reversed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号