首页 | 本学科首页   官方微博 | 高级检索  
     


Spasmolytic Effects of Aphanizomenon Flos Aquae (AFA) Extract on the Human Colon Contractility
Authors:Antonella Amato,Simona Terzo,Pierenrico Marchesa,Angela Maffongelli,Martina Martorana,Stefano Scoglio,Flavia Mulè  
Affiliation:1.Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.T.); (F.M.);2.U.O. Oncology Hospital, A.R.N.A.S. Ospedali Civico Di Cristina Benfratelli, Palermo, Via Carmelo Lazzaro, 4, 90127 Palermo, Italy; (P.M.); (A.M.); (M.M.);3.Nutritherapy Research Center, 61029 Urbino, Italy;
Abstract:The blue-green algae Aphanizomenon flos aquae (AFA), rich in beneficial nutrients, exerts various beneficial effects, acting in different organs including the gut. Klamin® is an AFA extract particularly rich in β-PEA, a trace-amine considered a neuromodulator in the central nervous system. To date, it is not clear if β-PEA exerts a role in the enteric nervous system. The aims of the present study were to investigate the effects induced by Klamin® on the human distal colon mechanical activity, to analyze the mechanism of action, and to verify a β-PEA involvement. The organ bath technique, RT-PCR, and immunohistochemistry (IHC) were used. Klamin® reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions. EPPTB, a trace-amine receptor (TAAR1) antagonist, significantly antagonized the inhibitory effects of both Klamin® and exogenous β-PEA, suggesting a trace-amine involvement in the Klamin® effects. Accordingly, AphaMax®, an AFA extract containing lesser amount of β-PEA, failed to modify colon contractility. Moreover, the Klamin® effects were abolished by tetrodotoxin, a neural blocker, but not by L-NAME, a nitric oxide-synthase inhibitor. On the contrary methysergide, a serotonin receptor antagonist, significantly antagonized the Klamin® effects, as well as the contractility reduction induced by 5-HT. The RT-PCR analysis revealed TAAR1 gene expression in the colon and the IHC experiments showed that 5-HT-positive neurons are co-expressed with TAAR1 positive neurons. In conclusion, the results of this study suggest that Klamin® exerts spasmolytic effects in human colon contractility through β-PEA, that, by activating neural TAAR1, induce serotonin release from serotoninergic neurons of the myenteric plexus.
Keywords:AFA extract, Klamin®  , human colon contractility, β  -PEA, motility discomfort
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号