首页 | 本学科首页   官方微博 | 高级检索  
检索        


Electrical coupling can prevent expression of adult-like properties in an embryonic neural circuit.
Authors:Tiaza Bem  Yves Le Feuvre  John Simmers  Pierre Meyrand
Institution:Laboratoire de Neurobiologie des Réseaux, Université Bordeaux I and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5816, 33405 Talence, France.
Abstract:Electrical coupling is widespread in developing nervous systems and plays a major role in circuit formation and patterning of activity. In most reported cases, such coupling between rhythmogenic neurons tends to synchronize and enhance their oscillatory behavior, thereby producing monophasic rhythmic output. However, in many adult networks, such as those responsible for rhythmic motor behavior, oscillatory neurons are linked by synaptic inhibition to produce rhythmic output with multiple phases. The question then arises whether such networks are still able to generate multiphasic output in the early stage of development when electrical coupling is abundant. A suitable model for addressing this issue is the lobster stomatogastric nervous system (STNS). In the adult animal, the STNS consists of three discrete neural networks that are comprised of oscillatory neurons interconnected by reciprocal inhibition. These networks generate three distinct rhythmic motor patterns with large amplitude neuronal oscillations. By contrast, in the embryo the same neuronal population expresses a single multiphasic rhythm with small-amplitude oscillations. Recent findings have revealed that adult-like network properties are already present early in the embryonic system but are masked by an as yet unknown mechanism. Here we use computer simulation to test whether extensive electrical coupling may be involved in masking adult-like properties in the embryonic STNS. Our basic model consists of three different adult-like STNS networks that are built of relaxation oscillators interconnected by reciprocal synaptic inhibition. Individual model cells generate slow membrane potential oscillations without action potentials. The introduction of widespread electrical coupling between members of these networks dampens oscillation amplitudes and, at moderate coupling strengths, may coordinate neuronal activity into a single rhythm with different phases, which is strongly reminiscent of embryonic STNS output. With a further increase in coupling strength, the system reaches one of two final states depending on the relative contribution of inhibition and inherent oscillatory properties within the networks: either fully synchronized and dampened oscillations, or a complete collapse of activity. Our simulations indicate that, beginning from either of these two states, the emergence of distinct adult networks during maturation may arise from a developmental decrease in electrical coupling that unmasks preexisting adult-like network properties.
Keywords:
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号