首页 | 本学科首页   官方微博 | 高级检索  
     


Stiffener Design to Maintain Line Heating Efficiency during the Lifting Process Considering Phase Transformation
Authors:Hong-Jun Noh  Hun-Bong Lim  Hee-Chan Yoon  Young-Hwan Han  Hyun-Ik Yang
Affiliation:1.Department of Mechanical Engineering, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea; (H.-J.N.); (H.-C.Y.); (Y.-H.H.);2.Department of Mechanical Design Engineering, Myongji College, 134, Gajwa-ro, Seodaemun-gu, Seoul 03656, Korea;
Abstract:
In the shipbuilding industry, welding is the main technique used to join steel structures. There is a lifting process, post-welding, that can eliminate the correction effect of line heating. Line heating is reperformed after the lifting process. This can significantly delay the ship assembly process. Herein, we present a design method for installing a permanent stiffener to avoid the disappearance of the line heating effect during the lifting process. The change in physical properties due to heating and cooling of the line heating is calculated. The limiting stress, at which the effect of the line heating completely disappears, based on the inherent strain theory, is obtained. The phase fraction by the cooling rate is calculated using the continuous cooling transformation diagram and the Kiustinen–Marburgerm equation. Physical properties affected by the phase transformation are calculated, considering the physical properties and fraction of each phase. The square plate theory and superposition principle are used to construct a local model, with a stiffener, of the ship block. The stress caused by the shape of the stiffener and the distance between the stiffeners were calculated for the local model. The calculated stress and the limiting stress were compared to determine, for the expected line heating efficiency, the most acceptable stiffener design. Finally, to confirm the elimination of the problem, the designed stiffener is analyzed using the finite element method.
Keywords:equivalent thermal strain method   line heating   lifting   inherent strain
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号