首页 | 本学科首页   官方微博 | 高级检索  
     


Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone).
Authors:Hong Yuan  Thies Schroeder  James E Bowsher  Laurence W Hedlund  Terence Wong  Mark W Dewhirst
Affiliation:Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA.
Abstract:
Cu-Diacetyl-bis(N(4)-methylthiosemicarbazone) (Cu-ATSM) is a recently developed PET imaging agent for tumor hypoxia. However, its accuracy and reliability for measuring hypoxia have not been fully characterized in vivo. The aim of this study was to evaluate (64)Cu-ATSM as a hypoxia PET marker by comparing autoradiographic distributions of (64)Cu-ATSM with a well-established hypoxia marker drug, EF5. METHODS: R3230 mammary adenocarcinomas (R3230Ac), fibrosarcomas (FSA), and 9L gliomas (9L) were used in the study. EF5 and Hoechst 33342, a vascular perfusion marker, were administered to the animal for immunohistochemical analysis. (64)Cu-ATSM microPET and autoradiography were performed on the same animal. The tumor-to-muscle ratio (T/M ratio) and standardized uptake values (SUVs) were characterized for these 3 different types of tumors. Five types of images-microPET, autoradiography, EF5 immunostaining, Hoechst fluorescence vascular imaging, and hematoxylin-and-eosin histology-were superimposed, evaluated, and compared. RESULTS: A significantly higher T/M ratio and SUV were seen for FSA compared with R3230Ac and 9L. Spatial correlation analysis between (64)Cu-ATSM autoradiography and EF5 immunostained images varied between the 3 tumor types. There was close correlation of (64)Cu-ATSM uptake and hypoxia in R3230Ac and 9L tumors but not in FSA tumors. Interestingly, elevated (64)Cu-ATSM uptake was observed in well-perfused areas in FSA, indicating a correlation between (64)Cu-ATSM uptake and vascular perfusion as opposed to hypoxia. The same relationship was observed with 2 other hypoxia markers, pimonidazole and carbonic anhydrase IX, in FSA tumors. Breathing carbogen gas significantly decreased the hypoxia level measured by EF5 staining in FSA-bearing rats but not the uptake of (64)Cu-ATSM. These results indicate that some other (64)Cu-ATSM retention mechanisms, as opposed to hypoxia, are involved in this type of tumor. CONCLUSION: To our knowledge, this study is the first comparison between (64)Cu-ATSM uptake and immunohistochemistry in these 3 tumors. Although we have shown that (64)Cu-ATSM is a valid PET hypoxia marker in some tumor types, but not for all, this tumor type-dependent hypoxia selectivity of (64)Cu-ATSM challenges the use of (64)Cu-ATSM as a universal PET hypoxia marker. Further studies are needed to define retention mechanisms for this PET marker.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号