首页 | 本学科首页   官方微博 | 高级检索  
     


The role of metallothionein induction and altered zinc status in maternally mediated developmental toxicity: Comparison of the effects of urethane and styrene in rats
Authors:George P. Daston   Gary J. Overmann   Marie W. Taubeneck   Lois D. Lehman-McKeeman   John M. Rogers  Carl L. Keen
Affiliation:Miami Valley Laboratories, Procter & Gamble Company, Cincinnati, Ohio 45239.
Abstract:We hypothesize that maternal metallothionein (MT) induction by toxic dosages of chemicals may contribute to or cause developmental toxicity by a chain of events leading to a transient but developmentally adverse decrease in Zn availability to the embryo. This hypothesis was tested by evaluating hepatic MT induction, maternal and embryonic Zn status, and developmental toxicity after exposure to urethane, a developmental toxicant, or styrene, which is not a developmental toxicant. Pregnant Sprague-Dawley rats were given 0 or 1 g/kg urethane ip, or 0 or 300 mg/kg styrene in corn oil po, on Gestation Day 11 (sperm positive = Gestation Day 0). These were maternally toxic dosages. As both treatments decreased food consumption, separate pair-fed control groups were also evaluated for effects on MT and Zn status and development. In addition, Gestation Day 11 rat embryos were exposed to urethane in vitro in order to determine whether urethane has the potential to be directly embryotoxic. Urethane treatment induced hepatic MT 14-fold over control; styrene treatment induced MT 2.5-fold. The MT induction by styrene could be attributed to decreased food intake, as a similar level of induction was observed in a pair-fed untreated control group. However, the level of MT induction by urethane was much greater than that produced by decreased food intake alone. Hepatic Zn concentration, particularly in the cytosol, was increased in the presence of increased hepatic MT concentration. Plasma Zn concentration was significantly decreased (approximately 30%) by urethane treatment, but not by styrene or food restriction (pair-feeding). Distribution of 65Zn to the liver of urethane-treated dams was significantly greater (by 30%), while distribution to embryonic tissues was significantly lower (by at least 50%) than in pair-fed or ad lib.-fed controls. Styrene treatment had no effect on 65Zn distribution. Urethane was developmentally toxic, causing an 18% decrease in fetal weight and a significant delay in skeletal ossification, but was not toxic to rat embryos in vitro. Styrene was not developmentally toxic. The changes observed after urethane treatment, namely substantial hepatic MT induction and altered maternal and embryonic Zn status, along with the lack of direct embryotoxicity of urethane in vitro, support the hypothesis that these maternal effects contribute to developmental toxicity. The lack of similar changes in styrene-intoxicated dams provides one explanation for its low developmental toxicity at maternally toxic dosages.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号