首页 | 本学科首页   官方微博 | 高级检索  
     


The Effect of Visual Contrast on Human Vestibulo-Ocular Reflex Adaptation
Authors:M. Muntaseer Mahfuz  Michael C. Schubert  Christopher J. Todd  William V. C. Figtree  Serajul I. Khan  Americo A. Migliaccio
Affiliation:1.Balance and Vision Laboratory,Neuroscience Research Australia,Sydney,Australia;2.University of New South Wales,Sydney,Australia;3.Laboratory of Vestibular NeuroAdaptation, Department of Otolaryngology - Head and Neck Surgery,Johns Hopkins University,Baltimore,USA;4.Department of Physical Medicine and Rehabilitation,Johns Hopkins University,Baltimore,USA;5.Department of Otolaryngology - Head and Neck Surgery,Johns Hopkins University,Baltimore,USA
Abstract:
The vestibulo-ocular reflex (VOR) is the main retinal image stabilising mechanism during rapid head movement. When the VOR does not stabilise the world or target image on the retina, retinal image slip occurs generating an error signal that drives the VOR response to increase or decrease until image slip is minimised, i.e. VOR adaptation occurs. Visual target contrast affects the human smooth pursuit and optokinetic reflex responses. We sought to determine if contrast also affected VOR adaptation. We tested 12 normal subjects, each over 16 separate sessions. For sessions 1–14, the ambient light level (lx) during adaptation training was as follows: dark, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2, 8, 16, 32, 64, 128 and 255 lx (light level for a typical room). For sessions 15–16, the laser target power (related to brightness) was halved with ambient light at 0 and 0.1 lx. The adaptation training lasted 15 min and consisted of left/right active head impulses. The VOR gain was challenged to increment, starting at unity, by 0.1 every 90 s for rotations to the designated adapting side and fixed at unity towards the non-adapting side. We measured active and passive VOR gains before and after adaptation training. We found that for both the active and passive VOR, there was a significant increase in gain only towards the adapting side due to training at contrast level 1.5 k and above (2 lx and below). At contrast level 261 and below (16 lx and above), adaptation training resulted in no difference between adapting and non-adapting side gains. Our modelling suggests that a contrast threshold of ~ 1000, which is 60 times higher than that provided by typical room lighting, must be surpassed for robust active and passive VOR adaptation. Our findings suggest contrast is an important factor for adaptation, which has implication for rehabilitation programs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号