首页 | 本学科首页   官方微博 | 高级检索  
     


Neither the Bvg− Phase nor the vrg6 Locus of Bordetella pertussis Is Required for Respiratory Infection in Mice
Authors:Guillermo Martinez de Tejada   Peggy A. Cotter   Ulrich Heininger   Andrew Camilli   Brian J. Akerley   John J. Mekalanos     Jeff F. Miller
Affiliation:Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, California 90095-17471.; Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 021153.; and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111-18002.
Abstract:In Bordetella species, the BvgAS sensory transduction system mediates an alteration between the Bvg+ phase, characterized by expression of adhesins and toxins, and the Bvg phase, characterized by the expression of motility and coregulated phenotypes in Bordetella bronchiseptica and by the expression of vrg loci in Bordetella pertussis. Since there is no known environmental or animal reservoir for B. pertussis, the causative agent of whooping cough, it has been assumed that this phenotypic alteration must occur within the human host during infection. Consistent with this hypothesis was the observation that a B. pertussis mutant, SK6, containing a TnphoA insertion mutation in a Bvg-repressed gene (vrg6) was defective for tracheal and lung colonization in a mouse model of respiratory infection (D. T. Beattie, R. Shahin, and J. Mekalanos, Infect. Immun. 60:571–577, 1992). This result was inconsistent, however, with the observation that a Bvg+ phase-locked B. bronchiseptica mutant was indistinguishable from the wild type in its ability to establish a persistent respiratory infection in rabbits and rats (P. A. Cotter and J. F. Miller, Infect. Immun. 62:3381–3390, 1994; B. J. Akerley, P. A. Cotter, and J. F. Miller, Cell 80:611–620, 1995). To directly address the role of Bvg-mediated signal transduction in B. pertussis pathogenesis, we constructed Bvg+ and Bvg phase-locked mutants and compared them with the wild type for their ability to colonize the respiratory tracts of mice. Our results show that the Bvg+ phase of B. pertussis is necessary and sufficient for respiratory infection. By constructing a strain with a deletion in the bvgR regulatory locus, we also show that ectopic expression of Bvg phase phenotypes decreases the efficiency of colonization, underscoring the importance of Bvg-mediated repression of gene expression in vivo. Finally, we show that the virulence defect present in strain SK6 cannot be attributed to the vrg6 mutation. These data contradict an in vivo role for the Bvg phase of B. pertussis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号