首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of the Elastic,Piezoelectric, and Dielectric Properties of Lithium Niobate from 25 °C to 900 °C Using Electrochemical Impedance Spectroscopy Resonance Method
Authors:Sevan Bouchy,Ricardo J. Zednik,Pierre Bé  langer
Affiliation:1.Piezoelectricity and Ultrasonics Technologies and Materials Laboratory at ÉTS (PULÉTS), Montréal, QC H3C1K3, Canada; (S.B.); (P.B.);2.Department of Mechanical Engineering, École de Technologie Supérieure, Université du Québec, Montréal, QC H3C1K3, Canada
Abstract:Lithium niobate (LiNbO3) is known for its high Curie temperature, making it an attractive candidate for high-temperature piezoelectric applications (>200 °C); however, the literature suffers from a paucity of reliable material properties data at high temperatures. This paper therefore provides a complete set of elastic and piezoelectric coefficients, as well as complex dielectric constants and the electrical conductivity, for congruent monocrystalline LiNbO3 from 25 °C to 900 °C at atmospheric pressure. An inverse approach using the electrochemical impedance spectroscopy (EIS) resonance method was used to determine the materials’ coefficients and constants. Single crystal Y-cut and Z-cut samples were used to estimate the twelve coefficients defining the electromechanical coupling of LiNbO3. We employed an analytical model inversion to calculate the coefficients based on a linear superposition of nine different bulk acoustic waves (three longitudinal waves and six shear waves), in addition to considering the thermal expansion of the crystal. The results are reported and compared with those of other studies for which the literature has available values. The dominant piezoelectric stress constant was found to be e15, which remained virtually constant between 25 °C and 600 °C; thereafter, it decreased by approximately 10% between 600 °C and 900 °C. The elastic stiffness coefficients c11E, c12E, and c33E all decreased as the temperature increased. The two dielectric constants ϵ11S and ϵ33S increased exponentially as a function of temperature.
Keywords:lithium niobate   piezoelectricity   high temperature   impedance spectroscopy   resonance method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号