首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of prenylated flavonoids and biflavonoids on lipopolysaccharide-induced nitric oxide production from the mouse macrophage cell line RAW 264.7
Authors:Cheon B S  Kim Y H  Son K S  Chang H W  Kang S S  Kim H P
Affiliation:College of Pharmacy, Kangwon National University, Chunchon, Korea.
Abstract:
Certain flavonoid derivatives possess anti-inflammatory activity in vitro and in vivo. Besides their antioxidative properties and effects on the arachidonic acid metabolism including cyclooxygenase/lipoxygenase inhibition, some flavones and flavonols were previously found to show inhibitory activity on nitric oxide production by inducible nitric oxide synthase (iNOS; NOS type 2) through suppression of iNOS induction. As part of our continuing investigations, the effects of unique and minor flavonoids (prenylated flavonoids and biflavonoids) on nitric oxide production from lipopolysaccharide-induced macrophage cell line (RAW 264.7) were evaluated in order to establish their inhibitory activity on NO production and correlate this action with their in vivo anti-inflammatory potential. Among the derivatives tested, prenylated compounds including morusin, kuwanon C, and sanggenon D and biflavonoids such as bilobetin and ginkgetin were found to inhibit NO production from lipopolysaccharide (LPS)-induced RAW 264.7 cells at > 10 microM. Inhibition of nitric oxide production was mediated by suppression of iNOS enzyme induction but not by direct inhibition of iNOS enzyme activity. An exception was echinoisoflavanone that inhibited iNOS enzyme activity (IC50 = 83 microM) and suppressed iNOS enzyme induction as well. While most prenylated derivatives showed cytotoxicity to RAW cells at 10-100 microM, all biflavonoids tested were not cytotoxic. Since nitric oxide (NO) produced by inducible NO synthase (iNOS) plays an important role in inflammatory disorders, inhibition of NO production by these flavonoids may contribute, at least in part, to their anti-inflammatory and immunoregulating potential in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号