Guidelines on nicotine dose selection for in vivo research |
| |
Authors: | Shannon G. Matta David J. Balfour Neal L. Benowitz R. Thomas Boyd Jerry J. Buccafusco Anthony R. Caggiula Caroline R. Craig Allan C. Collins M. Imad Damaj Eric C. Donny Phillip S. Gardiner Sharon R. Grady Ulrike Heberlein Sherry S. Leonard Edward D. Levin Ronald J. Lukas Athina Markou Michael J. Marks Sarah E. McCallum Neeraja Parameswaran Kenneth A. Perkins Marina R. Picciotto Maryka Quik Jed E. Rose Adrian Rothenfluh William R. Schafer Ian P. Stolerman Rachel F. Tyndale Jeanne M. Wehner Jeffrey M. Zirger |
| |
Affiliation: | Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 874 Union Avenue, Crowe 115, Memphis, TN 38163, USA. smatta@utmem.edu |
| |
Abstract: | Rationale This review provides insight for the judicious selection of nicotine dose ranges and routes of administration for in vivo studies. The literature is replete with reports in which a dosaging regimen chosen for a specific nicotine-mediated response was suboptimal for the species used. In many cases, such discrepancies could be attributed to the complex variables comprising species-specific in vivo responses to acute or chronic nicotine exposure. Objectives This review capitalizes on the authors’ collective decades of in vivo nicotine experimentation to clarify the issues and to identify the variables to be considered in choosing a dosaging regimen. Nicotine dose ranges tolerated by humans and their animal models provide guidelines for experiments intended to extrapolate to human tobacco exposure through cigarette smoking or nicotine replacement therapies. Just as important are the nicotine dosaging regimens used to provide a mechanistic framework for acquisition of drug-taking behavior, dependence, tolerance, or withdrawal in animal models. Results Seven species are addressed: humans, nonhuman primates, rats, mice, Drosophila, Caenorhabditis elegans, and zebrafish. After an overview on nicotine metabolism, each section focuses on an individual species, addressing issues related to genetic background, age, acute vs chronic exposure, route of administration, and behavioral responses. Conclusions The selected examples of successful dosaging ranges are provided, while emphasizing the necessity of empirically determined dose–response relationships based on the precise parameters and conditions inherent to a specific hypothesis. This review provides a new, experimentally based compilation of species-specific dose selection for studies on the in vivo effects of nicotine. |
| |
Keywords: | Human Nonhuman primate Rat Mouse Drosophila C. elegans Zebrafish |
本文献已被 PubMed SpringerLink 等数据库收录! |
|