首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic Stress Computed Tomography Perfusion With a Whole-Heart Coverage Scanner in Addition to Coronary Computed Tomography Angiography and Fractional Flow Reserve Computed Tomography Derived
Affiliation:1. Centro Cardiologico Monzino, IRCCS, Milan, Italy;2. Department of Cardiovascular Sciences and Community Health, University of Milan;3. Institute of Cardiovascular Disease, Department of Emergency and Organ Transplantation, University Hospital “Policlinico” of Bari, Bari, Italy;4. Loyola University of Chicago, Chicago, Illinois;5. Edward Hines Jr. VA Hospital, Hines, Illinois;6. Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, Milan, Italy
Abstract:
ObjectivesThe aims of the study were to test the diagnostic accuracy of integrated evaluation of dynamic myocardial computed tomography perfusion (CTP) on top of coronary computed tomography angiography (cCTA) plus fractional flow reserve computed tomography derived (FFRCT) by using a whole-heart coverage computed tomography (CT) scanner as compared with clinically indicated invasive coronary angiography (ICA) and invasive fractional flow reserve (FFR).BackgroundRecently, new techniques such as dynamic stress computed tomography perfusion (stress-CTP) emerged as potential strategies to combine anatomical and functional evaluation in a one-shot scan. However, previous experiences with this technique were associated with high radiation exposure.MethodsEighty-five consecutive symptomatic patients scheduled for ICA were prospectively enrolled. All patients underwent rest cCTA followed by stress dynamic CTP with a whole-heart coverage CT scanner (Revolution CT, GE Healthcare, Milwaukee, Wisconsin). FFRCT was also measured by using the rest cCTA dataset. The diagnostic accuracy to detect functionally significant coronary artery disease (CAD) in a vessel-based model of cCTA alone, cCTA+FFRCT, cCTA+CTP, or cCTA+FFRCT+CTP were assessed and compared by using ICA and invasive FFR as reference. The overall effective dose of dynamic CTP was also measured.ResultsThe prevalence of obstructive CAD and functionally significant CAD was 77% and 57%, respectively. The sensitivity and specificity of cCTA alone, cCTA+FFRCT, and cCTA+CTP were 83% and 66%, 86% and 75%, and 73% and 86%, respectively. Both the addition of FFRCT and CTP improves the area under the curve (AUC: 0.876 and 0.878, respectively) as compared with cCTA alone (0.826; p < 0.05). The sequential strategy of cCTA+FFRCT+CTP showed the highest AUC (0.919; p < 0.05) as compared with all other strategies. The mean effective radiation dose (ED) for cCTA and stress CTP was 2.8 ± 1.2 mSv and 5.3 ± 0.7 mSv, respectively.ConclusionsThe addition of dynamic stress CTP on top of cCTA and FFRCT provides additional diagnostic accuracy with acceptable radiation exposure.
Keywords:accuracy  computed tomography  coronary artery disease  dynamic stress computed tomography  AIF"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0035"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  arterial input function  AUC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0045"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  area under the curve  CAD"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0055"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  coronary artery disease  cCTA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0065"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  coronary computed tomography angiography  CT"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0075"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  computed tomography  CTP"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0085"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  computed tomography perfusion  ED"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0095"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  effective radiation dose  FFR"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0105"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  fractional flow reserve  fractional flow reserve computed tomography derived  HR"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0125"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  heart rate  ICA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0135"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  invasive coronary angiography  MBF"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0145"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  myocardial blood flow  PET"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0155"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  positron emission tomography  SPECT"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0165"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  single-photon emission computed tomography
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号