An analytic model of neutron ambient dose equivalent and equivalent dose for proton radiotherapy |
| |
Authors: | Zhang Rui Pérez-Andújar Angélica Fontenot Jonas D Taddei Phillip J Newhauser Wayne D |
| |
Affiliation: | Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA. |
| |
Abstract: | Stray neutrons generated in passively scattered proton therapy are of concern because they increase the risk that a patient will develop a second cancer. Several investigations characterized stray neutrons in proton therapy using experimental measurements and Monte Carlo simulations, but capabilities of analytical methods to predict neutron exposures are less well developed. The goal of this study was to develop a new analytical model to calculate neutron ambient dose equivalent in air and equivalent dose in phantom based on Monte Carlo modeling of a passively scattered proton therapy unit. The accuracy of the new analytical model is superior to a previous analytical model and comparable to the accuracy of typical Monte Carlo simulations and measurements. Predictions from the new analytical model agreed reasonably well with corresponding values predicted by a Monte Carlo code using an anthropomorphic phantom. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|