首页 | 本学科首页   官方微博 | 高级检索  
     


Different cerebral cortical areas influence the effect of subthalamic nucleus stimulation on parkinsonian motor deficits and freezing of gait.
Authors:Chul Hyoung Lyoo  Sargo Aalto  Juha O Rinne  Ki Ook Lee  Seung Hun Oh  Jin Woo Chang  Myung Sik Lee
Affiliation:Department of Neurology, Youngdong Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
Abstract:Inconsistent response in freezing of gait (FOG) with levodopa treatment or STN DBS makes the pathogenesis difficult to understand. We studied brain areas associated with the expression of STN DBS effect on parkinsonian motor deficits and FOG. Ten Parkinson's disease patients with typical FOG were included. One month before STN DBS, we performed [(18)F]-deoxyglucose PET scans and measured the UPDRS motor and modified FOG (mFOG) scores during levodopa off and on periods. At two months after STN DBS, same rating scores were measured. The percentage improvement of mFOG and UPDRS motor scores by STN DBS during levodopa off period was calculated. We searched for brain areas in which glucose metabolism correlated with the improvement of mFOG and UPDRS motor scores by DBS. During levodopa off period, STN DBS improved the UPDRS motor scores by 32.3% and the mFOG scores by 56.6%. There was no correlation between the improvements of both scores. The improvement of UPDRS motor score by DBS correlated with the metabolic activities of rostral supplementary motor area (Brodmann's area 8; BA8), anterior cingulate cortex (BA32), and prefrontal cortex (BA9). On the other hand, there was a positive correlation between the improvement of mFOG score by DBS and the metabolic activity of the parietal, occipital, and temporal sensory association cortices. In conclusion, dysfunction of different cerebral cortical areas limits the beneficial effects of DBS on parkinsonian motor deficits and FOG.
Keywords:Parkinson's disease  deep brain stimulation  positron emission tomography  gait freezing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号