首页 | 本学科首页   官方微博 | 高级检索  
     

机器学习多类接收机工作特性研究
引用本文:李静,王金甲,洪文学. 机器学习多类接收机工作特性研究[J]. 生物医学工程学杂志, 2012, 0(1): 170-174
作者姓名:李静  王金甲  洪文学
作者单位:燕山大学理学院;燕山大学电气学院;燕山大学信息学院
基金项目:国家自然科学基金资助项目(60904100,61074195);河北省自然科学基金资助项目(F2010001281,A2010001124)
摘    要:接收机工作特性(ROC)曲线已经成为误分类代价未知时的两类分类器分析和比较的标准工具,实际上已经取代了分类正确率或错误率。扩展两类ROC曲线到多类ROC曲面已经成为一个增长性的研究热点。本文阐述了ROC曲线的基本概念和应用,重点介绍了多类ROC曲面的历史和具体算法,指出多类ROC曲面的研究趋势是近似计算和可视化。

关 键 词:分类性能  混淆矩阵  接收机工作特性曲线  曲线下面积  多类接收机工作特性曲面

Research on Operating Characteristics of Multiclass Receiver in Machine Learning
Li Jing,Wang Jinjia,Hong Wenxue. Research on Operating Characteristics of Multiclass Receiver in Machine Learning[J]. Journal of biomedical engineering, 2012, 0(1): 170-174
Authors:Li Jing  Wang Jinjia  Hong Wenxue
Affiliation:1(College of Science,Yanshan University,Qinhuangdao 066004, China)2(College of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China) 3(College of Information Science and Engineer,Yanshan University,Qinhuangdao 066004,China)
Abstract:The Receiver Operating Characteristic(ROC) curve has become a standard tool for the analysis and comparison of binary classifiers when the costs of misclassification are unknown.In fact ROC curve has replaced the correct rate or error rate.Extending this to the multiclass case has recently become a growing topic of interest.The conceptions and application of ROC curve are expounded.The history and some algorithms of the multi-class ROC surface are given in detail in this paper.Finally research trends of the multi-class ROC surface are approximating computing and visualization.
Keywords:Classification performance  Confusion matrix  Receiver Operating Characteristic(ROC) curve  Area under curve(AUC)  Multiclass ROC surface
本文献已被 CNKI 等数据库收录!
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号