首页 | 本学科首页   官方微博 | 高级检索  
     


Synthetic spatially graded Rac activation drives cell polarization and movement
Authors:Benjamin Lin  William R. Holmes  C. Joanne Wang  Tasuku Ueno  Andrew Harwell  Leah Edelstein-Keshet  Takanari Inoue  Andre Levchenko
Affiliation:aDepartment of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21205;;bDepartment of Mathematics, University of British Columbia, Vancouver, BC, Canada, V6T 1Z2;;cDepartment of Mathematics, University of California, Irvine, CA, 92697; and;dDepartment of Cell Biology, Center for Cell Dynamics, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205
Abstract:
Migrating cells possess intracellular gradients of active Rho GTPases, which serve as central hubs in transducing signals from extracellular receptors to cytoskeletal and adhesive machinery. However, it is unknown whether shallow exogenously induced intracellular gradients of Rho GTPases are sufficient to drive cell polarity and motility. Here, we use microfluidic control to generate gradients of a small molecule and thereby directly induce linear gradients of active, endogenous Rac without activation of chemotactic receptors. Gradients as low as 15% were sufficient not only to trigger cell migration up the chemical gradient but to induce both cell polarization and repolarization. Cellular response times were inversely proportional to the steepness of Rac inducer gradient in agreement with a mathematical model, suggesting a function for chemoattractant gradient amplification upstream of Rac. Increases in activated Rac levels beyond a well-defined threshold augmented polarization and decreased sensitivity to the imposed gradient. The threshold was governed by initial cell polarity and PI3K activity, supporting a role for both in defining responsiveness to Rac activation. Our results reveal that Rac can serve as a starting point in defining cell polarity. Furthermore, our methodology may serve as a template to investigate processes regulated by intracellular signaling gradients.
Keywords:cell signaling   synthetic biology   chemotaxis   signal transduction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号