首页 | 本学科首页   官方微博 | 高级检索  
检索        


In vivo monitoring of extracellular glutamate in the brain with a microsensor
Authors:Oldenziel W H  Dijkstra G  Cremers T I F H  Westerink B H C
Institution:Department of Biomonitoring and Sensoring, University Center for Pharmacy, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands. w.h.oldenziel@rug.nl
Abstract:Recent discoveries have revealed that glutamatergic neurotransmission in the central nervous system is mediated by a dynamic interplay between neurons and astrocytes. To enhance our understanding of this process, the study of extracellular glutamate is crucial. At present, microdialysis is the most frequently used analytical technique to monitor extracellular glutamate levels directly in the brain. However, the neuronal and physiological origin of the detected glutamate levels is questioned as they do not fulfil the classical release criteria for exocytotic release, such as calcium dependency or response to the sodium channel blocker tetrodotoxine (TTX). It is hypothesized that an analytical technique with a higher spatial and temporal resolution is required. Glutamate microsensors provide a promising analytical solution to meet this requirement. In the present study, we applied a 10 micro m diameter hydrogel-coated glutamate microsensor to monitor extracellular glutamate levels in the striatum of anesthetized rats. To explore the potential of the microsensor, different pharmacological agents were injected in the vicinity of the sensor at an approximate distance of 100 micro m. It was observed that KCl, exogenous glutamate, kainate and the reuptake inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA) increased the extracellular glutamate levels significantly. TTX decreased the basal extracellular glutamate levels approximately 90%, which indicates that the microsensor is capable of detecting neuronally derived glutamate. This is one of the first studies in which a microsensor is applied in vivo on a routine base, and it is concluded that microsensor research can contribute significantly to improve our understanding of the physiology of glutamatergic neurotransmission in the brain.
Keywords:l-glutamate" target="_blank">l-glutamate  Microsensor  In vivo  Striatum  Extracellular  TTX
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号