Exogenous pathogen and plant 15-lipoxygenase initiate endogenous lipoxin A4 biosynthesis |
| |
Authors: | Bannenberg Gerard L Aliberti Julio Hong Song Sher Alan Serhan Charles |
| |
Affiliation: | Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. |
| |
Abstract: | Lipoxin A4 (LXA4) is a potent endogenous lipoxygenase-derived eicosanoid with antiinflammatory and proresolving properties. Supraphysiological levels of LXA4 are generated during infection by Toxoplasma gondii, which in turn reduces interleukin (IL) 12 production by dendritic cells, thus dampening Th1-type cell-mediated immune responses and host immunopathology. In the present work, we sought evidence for the structural basis of T. gondii's ability to activate LXA4 biosynthesis. Proteomic analysis of T. gondii extract (soluble tachyzoite antigen [STAg]), which preserves the immunosuppressive and antiinflammatory activity of the parasite, yielded several peptide matches to known plant lipoxygenases. Hence, we incubated STAg itself with arachidonic acid and found using LC-UV-MS-MS-based lipidomics that STAg produced both 15-HETE and 5,15-diHETE, indicating that T. gondii carries 15-lipoxygenase activity. In addition, T. gondii tachyzoites (the rapidly multiplying and invasive stage of the parasite) generated LXA4 when provided with arachidonic acid. Local administration of a plant (soybean) lipoxygenase itself reduced neutrophilic infiltration in murine peritonitis, demonstrating that 15-lipoxygenase possesses antiinflammatory properties. Administration of plant 15-lipoxygenase generated endogenous LXA4 and mimicked the suppression of IL-12 production by splenic dendritic cells observed after T. gondii infection or STAg administration. Together, these results indicate that 15-lipoxygenase expressed by a pathogen as well as exogenously administered 15-lipoxygenase can interact with host biosynthetic circuits for endogenous "stop signals" that divert the host immune response and limit acute inflammation. |
| |
Keywords: | antiinflammation transcellular biosynthesis lipid mediators Toxoplasma gondii leukocytes |
本文献已被 PubMed 等数据库收录! |
|