Characterization of CO3Ap-collagen sponges using X-ray high-resolution microtomography |
| |
Authors: | Itoh M Shimazu A Hirata I Yoshida Y Shintani H Okazaki M |
| |
Affiliation: | Department of Operative Dentistry and Dental Materials, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan. |
| |
Abstract: | For reconstruction and regeneration of hard tissues, scaffold biomaterials with large size pores and high porosity are important, in addition to their roles as supporting frames. To develop a new biodegradable scaffold biomaterial, CO3Ap, which has crystallinity and a chemical composition similar to bone, was synthesized at pH 7.4 and 60 degrees C. Then, the CO3Ap was mixed with a neutralized collagen gel and the CO3Ap-collagen mixtures with different kinds of CO3Ap contents and porosity were lyophilized into sponges. Scanning electron micrography (SEM) observation of CO3Ap-collagen sponges showed favorable pores for cell invasion. Approximately 50-300 microm size pores appeared to continue through the bulk. Higher magnification of the sponge showed a better adhesion between CO3Ap crystals and collagen. X-ray high-resolution microtomography revealed a clear image of the 3D structure of the sponges. The porosity of 0, 70 and 90%(w/w) CO3Ap-collagen sponges was 79.2 +/- 2.8%, 72.6 +/- 2.4% and 48.9 +/- 6.1%, respectively. The 70%(w/w) CO3Ap-collagen sponge appeared to be the most favorable biomaterial from the viewpoint of natural bone properties. Mouse osteoblast MC3T3-E1 cells were cultured in alphaMEM with 10% FCS for 2 weeks. Hematoxylin-eosin staining confirmed osteoblast cells invaded well into the CO3Ap-collagen sponge. These sponges are expected to be used as hard tissue scaffold biomaterials for therapeutic uses. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|