Polydispersity vs. Monodispersity. How the Properties of Ni-Ag Core-Shell Nanoparticles Affect the Conductivity of Ink Coatings |
| |
Authors: | Anna Pajor-Ś wierzy,Dawid Staś ko,Radosł aw Pawł owski,Grzegorz Mordarski,Alexander Kamyshny,Krzysztof Szczepanowicz |
| |
Affiliation: | 1.Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239 Kraków, Poland; (D.S.); (G.M.); (K.S.);2.Abraxas Jeremiasz Olgierd, Piaskowa 27, 44300 Wodzisław Śląski, Poland;3.Casali Center for Applied Chemistry, Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; |
| |
Abstract: | The effect of polydispersity of nickel-silver core-shell nanoparticles (Ni-Ag NPs) on the conductivity of ink coatings was studied. Ni-Ag NPs of various average diameters (100, 220, and 420 nm) were synthesized and utilized for the preparation of conductive inks composed of monodisperse NPs and their polydisperse mixtures. The shell thickness of synthesized Ni-Ag NPs was found to be in the range of 10–20 nm and to provide stability of a core metal to oxidation for at least 6 months. The conductivity of metallic films formed by inks with monodisperse Ni-Ag NPs was compared with those formed by polydisperse inks. In all cases, the optimal conditions for the formation of conductive patterns (weight ratio of monodisperse NPs for polydisperse composition, the concentration of the wetting agent, sintering temperature, and duration) were determined. It was found that metallic films formed by polydisperse ink containing 100, 220, and 420 nm Ni-Ag NPs with a mass ratio of 1:1.5:0.5, respectively, are characterized by the lowest resistivity, 10.9 µΩ·cm, after their thermal post-coating sintering at 300 °C for 30 min that is only 1.6 higher than that of bulk nickel. |
| |
Keywords: | core-shell nanoparticles monodispersity and polydispersity thermal sintering conductive properties |
|
|