首页 | 本学科首页   官方微博 | 高级检索  
     

基于R软件的逐步Cox回归模型拟合及Nomogram预测图绘制
引用本文:黎健, 陈敏, 刘乐山. 基于R软件的逐步Cox回归模型拟合及Nomogram预测图绘制[J]. 上海预防医学, 2019, 31(S1): 58-62. DOI: 10.19428/j.cnki.sjpm.2019.19798
作者姓名:黎健  陈敏  刘乐山
作者单位:1.上海交通大学医学院附属瑞金医院临床研究中心,上海 200025;2.上海市闵行区妇幼保健院儿童保健科,上海 201102
基金项目:上海申康医院发展中心临床管理优化项目(SHDC12018629)
摘    要:
目的建立基于R软件的逐步Cox回归模型拟合及列线图(Nomogram)绘制方法。方法以R软件的Survival包分别对R自带的Lung数据集228例晚期肺癌病人数据和美国监测、流行病、终点结局(surveillance, epidemiology and end results,SEER)数据库获取的6 341例胰腺癌病人数据拟合逐步Cox回归模型,采用rms包绘制列线图,以校准曲线对模型效果进行验证评价。结果Cox回归模型显示性别、ph.ecog评分是晚期肺癌病人生存的独立影响因素,年龄、肿瘤部位、肿瘤分化程度、TNM分期、肿瘤大小与淋巴结阳性率为胰腺癌病人生存的独立影响因素。
基于以上影响因素绘制的2个列线图可较准确地评估肺癌和胰腺癌病人1年、2年生存概率,校准曲线显示1年、2年实际生存概率与预测概率大致接近。
结论R绘制列线图方便,可直观地预测个体生存概率。


关 键 词:Cox回归  生存分析  列线图  预测
收稿时间:2019-10-02

How to control for unmeasured confounding in an observational time-to-event study with exposure incidence information:the treatment choice Cox model
LI Jian, CHEN Min, LIU Le-shan. Methodological application of stepwise Cox regression model fitting and predicting Nomogram construction based on R software[J]. Shanghai Journal of Preventive Medicine, 2019, 31(S1): 58-62. DOI: 10.19428/j.cnki.sjpm.2019.19798
Authors:LI Jian  CHEN Min  LIU Le-shan
Affiliation:1.Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;2.Department of children healthcare, Minhang District Maternal and Children Healthcare Hospital, Shanghai 201102, China
Abstract:
ObjectiveTo establish the methods of fitting the stepwise Cox regression model and constructing Nomogram based on R software.MethodsDataset on built-in 228 advanced lung cancer patients and dataset including 6 341 pancreatic cancer patients were downloaded from Surveillance, Epidemiology and End Results(SEER)program of USA were adopted to fit the stepwise Cox regression model with survival package of R, respectively. The rms package was used to construct Nomogram. The forecasting effects of Nomogram were validated by calibration curve.ResultsThe multivariate Cox regression demonstrated that gender and score of ph.
ecog were independent prognostic factors for overall survival of the advanced lung cancer patients, and showed that age, location of carcinoma in pancreas, tumor grade, TNM stage, size of carcinoma together with lymph node ratio(LNR)were independent survival predictors for pancreatic cancer patients, respectively. The Nomograms based on above prognostic factors could precisely calculate the 1-year and 2-year survival probability of patients with advanced lung cancer and pancreatic cancer, respectively. The calibration curve demonstrated the actual 1-year and 2-year survival probability was close to the predicting probability.[Conclusions]R software can conveniently construct the Nomogram, visually predicting the survival probability of patients.

Keywords:Cox regression  survival analysis  Nomogram  predict
点击此处可从《上海预防医学》浏览原始摘要信息
点击此处可从《上海预防医学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号