Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3 |
| |
Authors: | Sindhu Rajan ,Regina Preisig-Mü ller ,Erhard Wischmeyer&dagger ,Ralf Nehring&dagger ,Peter J. Hanley,Vijay Renigunta,Boris Musset,Gü nter Schlichthö rl,Christian Derst,reas Karschin&dagger ,Jü rgen Daut |
| |
Affiliation: | Institute of Physiology, Marburg University, Deutschhausstrasse 2, 35037 Marburg;Institute of Physiology, Wurzburg University, Rontgenring 9, 97070 Wurzburg, Germany |
| |
Abstract: | The two-pore-domain potassium channels TASK-1, TASK-3 and TASK-5 possess a conserved C-terminal motif of five amino acids. Truncation of the C-terminus of TASK-1 strongly reduced the currents measured after heterologous expression in Xenopus oocytes or HEK293 cells and decreased surface membrane expression of GFP-tagged channel proteins. Two-hybrid analysis showed that the C-terminal domain of TASK-1, TASK-3 and TASK-5, but not TASK-4, interacts with isoforms of the adapter protein 14-3-3. A pentapeptide motif at the extreme C-terminus of TASK-1, RRx(S/T)x, was found to be sufficient for weak but significant interaction with 14-3-3, whereas the last 40 amino acids of TASK-1 were required for strong binding. Deletion of a single amino acid at the C-terminal end of TASK-1 or TASK-3 abolished binding of 14-3-3 and strongly reduced the macroscopic currents observed in Xenopus oocytes. TASK-1 mutants that failed to interact with 14-3-3 isoforms (V411*, S410A, S410D) also produced only very weak macroscopic currents. In contrast, the mutant TASK-1 S409A, which interacts with 14-3-3-like wild-type channels, displayed normal macroscopic currents. Co-injection of 14-3-3ζ cRNA increased TASK-1 current in Xenopus oocytes by about 70 %. After co-transfection in HEK293 cells, TASK-1 and 14-3-3ζ (but not TASK-1ΔC5 and 14-3-3ζ) could be co-immunoprecipitated. Furthermore, TASK-1 and 14-3-3 could be co-immunoprecipitated in synaptic membrane extracts and postsynaptic density membranes. Our findings suggest that interaction of 14-3-3 with TASK-1 or TASK-3 may promote the trafficking of the channels to the surface membrane. |
| |
Keywords: | |
|
|