首页 | 本学科首页   官方微博 | 高级检索  
检索        


Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental area
Authors:Mátyás Ferenc  Urbán Gabriella M  Watanabe Masahiko  Mackie Ken  Zimmer Andreas  Freund Tamás F  Katona István
Institution:Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, H-1083 Budapest, Hungary.
Abstract:Intact endogenous cannabinoid signaling is involved in several aspects of drug addiction. Most importantly, endocannabinoids exert pronounced influence on primary rewarding effects of abused drugs, including exogenous cannabis itself, through the regulation of drug-induced increase in bursting activity of dopaminergic neurons in the ventral tegmental area (VTA). Previous electrophysiological studies have proposed that these dopaminergic neurons may release endocannabinoids in an activity-dependent manner to regulate their various synaptic inputs; however, the underlying molecular and anatomical substrates have so far been elusive. To facilitate understanding of the neurobiological mechanisms involving endocannabinoid signaling in drug addiction, we carried out detailed analysis of the molecular architecture of the endocannabinoid system in the VTA. In situ hybridization for sn-1-diacylglycerol lipase-alpha (DGL-alpha), the biosynthetic enzyme of the most abundant endocannabinoid, 2-arachidonoylglycerol (2-AG), revealed that DGL-alpha was expressed at moderate to high levels by most neurons of the VTA. Immunostaining for DGL-alpha resulted in a widespread punctate pattern at the light microscopic level, whereas high-resolution electron microscopic analysis demonstrated that this pattern is due to accumulation of the enzyme adjacent to postsynaptic specializations of several distinct morphological types of glutamatergic and GABAergic synapses. These axon terminal types carried presynaptic CB(1) cannabinoid receptors on the opposite side of DGL-alpha-containing synapses and double immunostaining confirmed that DGL-alpha is present on the plasma membrane of both tyrosine hydroxylase (TH)-positive (dopaminergic) and TH-negative dendrites. These findings indicate that retrograde synaptic signaling mediated by 2-AG via CB(1) may influence the drug-reward circuitry at multiple types of synapses in the VTA.
Keywords:Cannabinoid  DGL-α  CB1  Dopamine  Synaptic plasticity  Addiction  DAGL
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号