首页 | 本学科首页   官方微博 | 高级检索  
     


BK potassium channels control transmitter release at CA3–CA3 synapses in the rat hippocampus
Authors:Giacomo Raffaelli  Chiara Saviane  Majid H. Mohajerani  Paola Pedarzani   Enrico Cherubini
Affiliation:Department of Biomedicine and Surgery, Faculty of Health Sciences, Linköping University, SE;-581 85 Linköping, Sweden
Abstract:
Augmentation is a component of short-term synaptic plasticity with a gradual onset and duration in seconds. To investigate this component at the corticogeniculate synapse, whole cell patch-clamp recordings were obtained from principal cells in a slice preparation of the rat dorsal lateral geniculate nucleus. Trains with 10 stimuli at 25 Hz evoked excitatory postsynaptic currents (EPSCs) that grew in amplitude, primarily from facilitation. Such trains also induced augmentation that decayed exponentially with a time constant τ= 4.6 ± 2.6 s (mean ± standard deviation). When the trains were repeated at 1–10 s intervals, augmentation markedly increased the size of the first EPSCs, leaving late EPSCs unaffected. The magnitude of augmentation was dependent on the number of pulses, pulse rate and intervals between trains. Augmented EPSCs changed proportionally to basal EPSC amplitudes following alterations in extracellular calcium ion concentration. The results indicate that augmentation is determined by residual calcium remaining in the presynaptic terminal after repetitive spikes, competing with fast facilitation. We propose that augmentation serves to maintain a high synaptic strength in the corticogeniculate positive feedback system during attentive visual exploration.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号