Tuning of Sol–Gel Transition in the Mixed Polymer Micelle Solutions of Copolymer Mixtures Consisting of Enantiomeric Diblock and Triblock Copolymers of Polylactide and Poly(ethylene glycol)
1. Department of Biobased Materials Science, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan;2. National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
Abstract:
Poly(ethylene glycol) (PEG) is partially furanylated with different feed ratios of furfuryl isocyanate and used as the macro initiator of ring‐opening polymerization of l ‐ and d ‐lactides to synthesize copolymer mixtures of furan‐terminated AB diblock and ABA triblock copolymers (poly(oxyethylene)–poly(l ‐lactide)/poly(l ‐lactide)–poly(oxyethylene)–poly(l ‐lactide) and poly(oxyethylene–poly(d ‐lactide)/poly(d ‐lactide)–poly(oxyethylene)–poly‐(d ‐lactide)) having different diblock/triblock ratios. The mixed micelle solutions of these enantiomeric copolymer mixtures undergo sol‐to‐gel or gel‐to‐sol transition depending on the diblock/triblock ratio of the copolymer mixtures. The rheological properties of the mixed micelle solutions could also be controlled by changing the diblock/triblock ratios or the initial furanylation ratio of PEG.