首页 | 本学科首页   官方微博 | 高级检索  
检索        


Restoration of critical-size defects in the rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds
Authors:Guo Jun  Meng Zhaosong  Chen Gang  Xie Dan  Chen Yali  Wang Hang  Tang Wei  Liu Lei  Jing Wei  Long Jie  Guo Weihua  Tian Weidong
Institution:State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P.R. China.
Abstract:Composite nanohydroxyapatite/polyamide (n-HA/PA) biomaterials have been indicated for bone defect reconstruction, where PA is added to enhance the toughness of n-HA. However, a comprehensive understanding of the biological performance of this implant material remains to be determined. In this study, the biological activity of n-HA/PA biomaterials was characterized in vitro by assessing the growth of bone marrow stromal cells (BMSCs), and in an in vivo rabbit model. To evaluate the n-HA/PA performance under different osteogenic conditions in vivo, implants were inserted to critical-size bone defects in the angle and body of the rabbit mandible. To determine the necessity of ectogenic BMSC-n-HA/PA hybrids at different implantation sites, both raw n-HA/PA materials and BMSC-seeded n-HA/PA hybrids were implanted. Bone formation was detected by radiology and histological studies. The results showed that n-HA/PA composites had great bioactivity, demonstrating significant BMSC proliferation, active alkaline phosphatase secretion, and stimulating the expression of osteogenic proteins (bone morphogenetic protein 2 BMP2], osteoprotegerin OPG], osteopontin OPN], collagen type I Col I], and osteocalcin OCN]), in comparison to the control (polyethylene). At marrow-rich implantation sites (mandibular body), the amount of new bone formation was significant, but was not enhanced by the presence of BMSCs in the BMSC-n-HA/PA hybrids. However, the BMSC-n-HA/PA hybrids were essential for promoting bone formation in marrow-poor sites (mandibular angle). In conclusion, n-HA/PA biomaterials, which offer the advantage of enhanced mechanical performance over n-HA, exhibit significant bioactivity, including the capacity for bone regeneration at marrow-poor sites when implanted in combination with BMSCs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号