首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of neurotransmitter enzyme by quisqualate subtype glutamate receptors in cultured cerebellar and hippocampal neurons
Authors:Jose Rodriguez   Wendy Jacques-Berg   Coral Sanfeliu  Ambrish J. Patel
Affiliation:

MCR Collaborative Centre and Division of Neurophysiology and Neuropharmacology, National Institute for Medical Research, The Ridgeway, London, UK

Abstract:
The possible involvement of ionotropic and metabotropic quisqualate (QA) receptors in neuronal plasticity was studied in cultured glutamtergic cerebellar or hippocampal cells in terms of the specific activity of phosphate-activated glutaminase, an enzyme important in the synthesis of the putative neurotransmitter pool of glutamate. When cerebellar of hippocampal neurons were treated with QA, it elevated the specific activity of glutaminase in a dose-dependent manner. The half-maximal effect was obtained at about 0.1 μM, the maximum increase was at about 1 μM, but levels higher than 10 μM QA produced progressive reduction in glutaminase activity. In contrast, QA had little effects on the activities of lactate dehydrogenase and aspartate aminotransferase and the amount of protein, indicating that the increase in glutaminase was relatively specific. The QA-mediated increase in glutaminase was mimicked by the ionotropic QA receptor agonist -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA; EC50, about 0.5 μM), but not by the metabotropic QA receptor agonist trans-(±)-1-aino-cyclopentyl-1,3,dicarboxyalte (t-ACPD; up to 0.5 mM). The specific ionotropic QA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) inhibited QA- and AMPA-mediated increases in glutaminase activity in a dose-dependent manner, whereas other glutamate receptor antagonists, -2-amino-5-phosphonovalerate, γ--glutamyl aminomethyl sulphonic acid and γ--glutamyl diethyl ester were ineffective. The elevation of neurotransmitter enzyme was Ca2+-dependent. The increase in Ca2+ influx essentially through the activation of L-type voltage-operated Ca2+ channels, and not the mobilization of internal Ca2+ stores, was responsible for these QA receptor-mediated long-term plastic changes in hippocampal and cerebellar neurons.
Keywords:Excitatory amino acid   Ionotropic quisqualate receptor   Metabotropic quisqualate receptor   Ca2+ influx   Regulation of glutaminase   Hippocampal neuron   Cerebellar granule cell
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号