首页 | 本学科首页   官方微博 | 高级检索  
     

基于心电信号的睡眠阶段的辨识
引用本文:董精通,张涛,林仲志. 基于心电信号的睡眠阶段的辨识[J]. 北京生物医学工程, 2017, 36(4). DOI: 10.3969/j.issn.1002-3208.2017.04.012
作者姓名:董精通  张涛  林仲志
作者单位:天津大学电子信息工程学院 天津 300072;台湾长庚大学资讯工程学系 台湾 33302
基金项目:中国台湾科技部计划,台湾长庚医院CMRP计划
摘    要:
本研究以睡眠中的心电图信号为基础,计算出心率变异性的时域和频域参数,根据自律神经系统的变化与心率变异性的关联性,对睡眠的不同阶段进行辨识,从而实现睡眠质量监测的居家化。睡眠质量辨别算法以监督式倒传递类神经网络为核心,通过SDNN、RMSSD、SDSD、NN50、p NN50、HFnorm、VLF百分比、5 min TP等8个特征值,进行睡眠的5个阶段的辨别。实验通过686组数据测试发现,隐藏层神经元数目为30,性能目标为40,为最佳参数设定,其中对睡眠中Stage1阶段的识别率可达93.33%。

关 键 词:睡眠质量  心电图  心率变异性  类神经网络  时域  频域

Sleep-stage identification based on electrocardiogram
DONG Jingtong,ZHANG Tao,LIN Chung-Chih. Sleep-stage identification based on electrocardiogram[J]. Beijing Biomedical Engineering, 2017, 36(4). DOI: 10.3969/j.issn.1002-3208.2017.04.012
Authors:DONG Jingtong  ZHANG Tao  LIN Chung-Chih
Abstract:
The study calculated the parameters of heart rate variability (HRV) in the time domain and frequency domain based on electrocardiogram (ECG) during sleep and established a sleep-stage identification model through the association between the change of the autonomic nervous balance and HRV,which could be integrated with ECG equipment to achieve the sleep quality evaluation in the smart house.The study identified the five stages of sleep with the supervised back-propagation neural network whose eight parameters were SDNN,RMSSD,SDSD,NN50,pNN50,HF-norm,VLF percentage and 5min TP.Through testing 686 groups of data,the results presented that the number of hidden layer neurons as 30,performance goals as 40 were the best parameter setting,and the recognition rate of Stage1 in sleep phase reached 93.33%.
Keywords:sleep quality  electrocardiogram  heart rate variability  artificial neural network  time domain  frequency domain
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号