首页 | 本学科首页   官方微博 | 高级检索  
     

有限元分析颈椎棘突骨折内固定有效性
引用本文:沈彦,王朝阳,吴荣,陈博. 有限元分析颈椎棘突骨折内固定有效性[J]. 中国生物医学工程学报, 2017, 36(4): 456-463. DOI: 10.3969/j.issn.0258-8021.2017.04.010
作者姓名:沈彦  王朝阳  吴荣  陈博
作者单位:1中国人民解放军第98医院骨科, 浙江 湖州 3130002上海交通大学医学院附属瑞金医院伤骨科研究所,上海 200025
基金项目:南京军区医学科技创新项目(MS009);湖州市自然科学基金(2016YZB03)
摘    要:
通过对颈椎棘突骨折(累及椎板)内固定治疗有限元模型的建立和分析,明确此种治疗方式对颈椎棘突骨折的有效性。先建立正常全颈椎(C0-T1)的有限元模型并与文献报告进行对比验证,模型验证后,在正常模型基础上建立颈椎棘突骨折(累及椎板)模型,并模拟直型接骨板行内固定治疗,测量并比较颈椎棘突骨折模型及手术内固定模型和原始正常模型在前屈、后伸、左右侧弯、左右旋转6种条件下活动度改变。以及颈椎各结构的应力变化。结果表明,在正常模型上结合临床病例建立的颈椎棘突骨折(累及椎板)外观逼真,生物力学相似度良好。骨折模型部分节段,主要为C7-T1的活动度(前屈+后伸9.20°,左右侧弯5.83°,左右旋转13.12°)较正常模型(前屈+后伸7.11°,左右侧弯4.92°,左右旋转 9.59°)增大,尤其是旋转活动度,模拟植入内固定后稳定性增加(前屈+后伸4.07°,左右侧弯2.21°,左右旋转2.91°),且内固定钢板应力分析提示,承受最大应力值在安全范围。颈椎棘突骨折(累及椎板)及内固定模型可以较好地模拟临床实际病例,通过有限元分析预示,此型骨折存在潜在不稳的可能性,探讨微型棘突钢板在骨折手术治疗中的应用,具有一定的临床参考价值。

关 键 词:颈椎棘突骨折  内固定  有限元分析  
收稿时间:2016-05-25

Finite Element Analysis of Internal Fixation in Cervical Spinous Process Fracture
Shen Yan,Wang Chaoyang,Wu Rong,Chen Bo. Finite Element Analysis of Internal Fixation in Cervical Spinous Process Fracture[J]. Chinese Journal of Biomedical Engineering, 2017, 36(4): 456-463. DOI: 10.3969/j.issn.0258-8021.2017.04.010
Authors:Shen Yan  Wang Chaoyang  Wu Rong  Chen Bo
Affiliation:Department of Orthopedics, The PLA 98 Hospital, Huzhou 313000, Zhejiang, China;Department of Orthopedics Institute, Ruijin Hospital, Shanghai Jiaotong University School of Medicine,Shanghai 200025,China
Abstract:
The aim of this work is to establish a three-dimensional finite element model of cervical spinous process fracture (extension into the lamina) after internal fixation and assure its availability to surgical treatment. Based on a finite element model of a normal cervical spine, a finite element model of cervical spinous process fracture (extension into the lamina) was developed according to the clinical case, with which an internal fixation therapy on fracture model was simulated. The range of motion (ROM) under flexion, extension, lateral-bending and axial rotation were measured and analyzed in the normal and fracture model and fixation model. The force loading was applied on both vertebra and internal fixation to elucidate the safety of this surgical therapy. It was shown that the finite element model of cervical spinous process fracture (extension into the lamina) had a high similarity and profile to the clinical case. The range of motion (ROM) on C7-T1 segment under each movement in fracture model (flexion+extension 9.20°, lateral-bending 5.83°, axial rotation 13.12°) was larger than that in the normal model(flexion+extension 7.11°, lateral-bending 4.92°, axial rotation 9.59°), especially in the rotation movement. The whole cervical vertebra was more stable under internal fixation (flexion+extension 4.07°, lateral-bending 2.21°, axial rotation 2.91°) with the safety of internal fixation system. In conclusion, the finite element model could be used to simulate the biomechanics of cervical spinous process fracture (extension into the lamina) to indicate the potential for delayed instability.
Keywords:cervical spinous process fracture  internal fixation  finite element analysis  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国生物医学工程学报》浏览原始摘要信息
点击此处可从《中国生物医学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号