Chemokine CCL5 promotes robust optic nerve regeneration and mediates many of the effects of CNTF gene therapy |
| |
Authors: | Lili Xie Yuqin Yin Larry Benowitz |
| |
Affiliation: | aLaboratories for Neuroscience Research in Neurosurgery, Department of Neurosurgery, Boston Children’s Hospital, Boston, MA, 02115;bF.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, 02115;cDepartment of Neurosurgery, Harvard Medical School, Boston, MA, 02115;dDepartment of Ophthalmology, Harvard Medical School, Boston, MA, 02115;eProgram in Neuroscience, Harvard Medical School, Boston, MA, 02115 |
| |
Abstract: | Ciliary neurotrophic factor (CNTF) is a leading therapeutic candidate for several ocular diseases and induces optic nerve regeneration in animal models. Paradoxically, however, although CNTF gene therapy promotes extensive regeneration, recombinant CNTF (rCNTF) has little effect. Because intraocular viral vectors induce inflammation, and because CNTF is an immune modulator, we investigated whether CNTF gene therapy acts indirectly through other immune mediators. The beneficial effects of CNTF gene therapy remained unchanged after deleting CNTF receptor alpha (CNTFRα) in retinal ganglion cells (RGCs), the projection neurons of the retina, but were diminished by depleting neutrophils or by genetically suppressing monocyte infiltration. CNTF gene therapy increased expression of C-C motif chemokine ligand 5 (CCL5) in immune cells and retinal glia, and recombinant CCL5 induced extensive axon regeneration. Conversely, CRISPR-mediated knockdown of the cognate receptor (CCR5) in RGCs or treating wild-type mice with a CCR5 antagonist repressed the effects of CNTF gene therapy. Thus, CCL5 is a previously unrecognized, potent activator of optic nerve regeneration and mediates many of the effects of CNTF gene therapy.Like most pathways in the mature central nervous system (CNS), the optic nerve cannot regenerate once damaged due in part to cell-extrinsic suppressors of axon growth (1, 2) and the low intrinsic growth capacity of adult retinal ganglion cells (RGCs), the projection neurons of the eye (3–5). Consequently, traumatic or ischemic optic nerve injury or degenerative diseases such as glaucoma lead to irreversible visual losses. Experimentally, some degree of regeneration can be induced by intraocular inflammation or growth factors expressed by inflammatory cells (6–10), altering the cell-intrinsic growth potential of RGCs (3–5), enhancing physiological activity (11, 12), chelating free zinc (13, 14), and other manipulations (15–19). However, the extent of regeneration achieved to date remains modest, underlining the need for more effective therapies.Ciliary neurotrophic factor (CNTF) is a leading therapeutic candidate for glaucoma and other ocular diseases (20–23). Activation of the downstream signal transduction cascade requires CNTF to bind to CNTF receptor-α (CNTFRα) (24), which leads to recruitment of glycoprotein 130 (gp130) and leukemia inhibitory factor receptor-β (LIFRβ) to form a tripartite receptor complex (25). CNTFRα anchors to the plasma membrane through a glycosylphosphatidylinositol linkage (26) and can be released and become soluble through phospholipase C-mediated cleavage (27). CNTF has been reported to activate STAT3 phosphorylation in retinal neurons, including RGCs, and to promote survival, but it is unknown whether these effects are mediated by direct action of CNTF on RGCs via CNTFRα (28). Our previous studies showed that CNTF promotes axon outgrowth from neonate RGCs in culture (29) but fails to do so in cultured mature RGCs (8) or in vivo (6). Although some studies report that recombinant CNTF (rCNTF) can promote optic nerve regeneration (20, 30, 31), others find little or no effect unless SOCS3 (suppressor of cytokine signaling-3), an inhibitor of the Jak-STAT pathway, is deleted in RGCs (5, 6, 32). In contrast, multiple studies show that adeno-associated virus (AAV)-mediated expression of CNTF in RGCs induces strong regeneration (33–40). The basis for the discrepant effects of rCNTF and CNTF gene therapy is unknown but is of considerable interest in view of the many promising clinical and preclinical outcomes obtained with CNTF to date.Because intravitreal virus injections induce inflammation (41), we investigated the possibility that CNTF, a known immune modulator (42–44), might act by elevating expression of other immune-derived factors. We report here that the beneficial effects of CNTF gene therapy in fact require immune system activation and elevation of C-C motif chemokine ligand 5 (CCL5). Depletion of neutrophils, global knockout (KO) or RGC-selective deletion of the CCL5 receptor CCR5, or a CCR5 antagonist all suppress the effects of CNTF gene therapy, whereas recombinant CCL5 (rCCL5) promotes axon regeneration and increases RGC survival. These studies point to CCL5 as a potent monotherapy for optic nerve regeneration and to the possibility that other applications of CNTF and other forms of gene therapy might similarly act indirectly through other factors. |
| |
Keywords: | ciliary neurotrophic factor retinal ganglion cells regeneration neuroinflammation |
|
|