A Predictive Tool to Estimate the Risk of Axillary Metastases in Breast Cancer Patients with Negative Axillary Ultrasound |
| |
Authors: | T. J. Meretoja MD PhD P. S. Heikkilä MD PhD A. S. Mansfield MD G. Cserni MD DSc PhD E. Ambrozay MD G. Boross MD J. Zgajnar MD PhD A. Perhavec MD PhD B. Gazic MD R. Arisio MD PhD T. F. Tvedskov MD PhD M.-B. Jensen MSc M. H. K. Leidenius MD PhD |
| |
Affiliation: | 1. Breast Surgery Unit, Helsinki University Central Hospital, Helsinki, Finland 2. Department of Pathology, Helsinki University Central Hospital, Helsinki, Finland 3. Department of Pathology, Bács-Kiskun County Teaching Hospital, Kecskemét, Hungary 4. Department of Pathology, University of Szeged, Szeged, Hungary 5. Department of Radiology, Mamma ZRT, Bács-Kiskun County Teaching Hospital, Kecskemét, Hungary 6. Department of Surgery, Bács-Kiskun County Teaching Hospital, Kecskemét, Hungary 7. Department of Surgical Oncology, Institute of Oncology, Ljubljana, Slovenia 8. Department of Pathology, Institute of Oncology, Ljubljana, Slovenia 9. Department of Pathology, A.O. Citta’ della salute e della scienza-Sant‘Anna Hospital, Turin, Italy 10. Department of Breast Surgery, Copenhagen University Hospital, Copenhagen, Denmark 11. Danish Breast Cancer Cooperative Group, Copenhagen University Hospital, Copenhagen, Denmark
|
| |
Abstract: | ![]()
Background Sentinel node biopsy (SNB) is the “gold standard” in axillary staging in clinically node-negative breast cancer patients. However, axillary treatment is undergoing a paradigm shift and studies are being conducted on whether SNB may be omitted in low-risk patients. The purpose of this study was to evaluate the risk factors for axillary metastases in breast cancer patients with negative preoperative axillary ultrasound. Methods A total of 1,395 consecutive patients with invasive breast cancer and SNB formed the original patient series. A univariate analysis was conducted to assess risk factors for axillary metastases. Binary logistic regression analysis was conducted to form a predictive model based on the risk factors. The predictive model was first validated internally in a patient series of 566 further patients and then externally in a patient series of 2,463 patients from four other centers. All statistical tests were two-sided. Results A total of 426 of the 1,395 (30.5 %) patients in the original patient series had axillary lymph node metastases. Histological size (P < 0.001), multifocality (P < 0.001), lymphovascular invasion (P < 0.001), and palpability of the primary tumor (P < 0.001) were included in the predictive model. Internal validation of the model produced an area under the receiver operating characteristics curve (AUC) of 0.731 and external validation an AUC of 0.79. Conclusions We present a predictive model to assess the patient-specific probability of axillary lymph node metastases in patients with clinically node-negative breast cancer. The model performs well in internal and external validation. The model needs to be validated in each center before application to clinical use. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|