首页 | 本学科首页   官方微博 | 高级检索  
     


Renal sympathetic nerve activity is increased in monosodium glutamate induced hyperadipose rats
Authors:da Silva Mattos Alexandro Márcio  Xavier Carlos Henrique  Karlen-Amarante Marlusa  da Cunha Natália Veronez  Fontes Marco Antonio Peliky  Martins-Pinge Marli Cardoso
Affiliation:Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
Abstract:
Repeated exposure to cocaine can induce persistent alterations in the brain's reward system, including increases in the number of dendrites and spine density on medium-sized spiny neurons (MSNs) in the nucleus accumbens (NAc). The structural remodeling of dendrites and spines in the NAc is thought to play a critical role in cocaine addiction. MSNs in the NAc can be classified by expression of either D1 or D2 dopamine receptors, which are localized to the direct and indirect pathway, respectively. It is unknown whether the dendritic changes induced by repeated cocaine treatment occur in MSNs of the direct or indirect pathway. Because the traditional Golgi-Cox impregnation of neurons precludes identifying particular subpopulations of MSNs, we performed dendritic morphology analysis after biocytin-labeling and Golgi-Cox impregnation. We found that the biocytin staining MSNs showed higher dendritic spine density and higher number of dendrites than that in Golgi impregnation group. In addition, we found that the increasing spine density induced by repeated cocaine treatment in female mice was higher than that in male mice. Next we used biocytin staining and dynorphin/D2 receptor colocalization to determine which cell type(s) displayed dendritic changes after repeated cocaine treatment. We found that cocaine-induced changes in dendritic parameters occurred in MSNs of both the direct (D1-expressing) and indirect (D2-expressing) pathways.
Keywords:Cocaine   Dopamine receptor   Dendrite   Dendritic spine   Nucleus accumbens
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号