首页 | 本学科首页   官方微博 | 高级检索  
     


Resistance to itraconazole in Aspergillus nidulans and Aspergillus fumigatus is conferred by extra copies of the A. nidulans P-450 14alpha-demethylase gene, pdmA.
Authors:N Osherov  D P Kontoyiannis  A Romans  G S May
Affiliation:Division of Pathology and Laboratory Medicine, and Department of Internal Medicine Specialties, Section of Infectious Diseases, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
Abstract:Triazoles selectively inhibit the cytochrome P-450-dependent C-14 lanosterol alpha-demethylase (P-450 14 alpha DM), a key enzyme in ergosterol biosynthesis in fungi. To investigate mechanisms of triazole resistance in a mould, we used Aspergillus nidulans, a genetically amenable model fungus closely related to more pathogenic members of the genus. We selected for genes that would give resistance to itraconazole following transformation with a high copy genomic library of A. nidulans. In all the resistant colonies that we isolated, resistance was conferred by extra copies of the A. nidulans P-450 14 alpha DM gene, pdmA. We determined that in A. nidulans, extra copies of pdmA increase the MIC for itraconazole 36 times over wild-type controls. Similarly, transformation of an Aspergillus fumigatus strain with pITZR1 resulted in increased resistance to itraconazole. Our results indicate that triazole resistance in clinical isolates of moulds may result from amplification or overexpression of the P-450 14 alpha DM and demonstrate the utility of A. nidulans as a promising model fungus for the analysis of drug resistance and susceptibility in the pathogenic fungus A. fumigatus.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号