首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于脑电信号的疲劳驾驶状态判断方法
引用本文:李明爱,张诚,杨金福. 一种基于脑电信号的疲劳驾驶状态判断方法[J]. 北京生物医学工程, 2011, 30(1): 57-61. DOI: 10.3969/j.issn.1002-3208.2011.01.11
作者姓名:李明爱  张诚  杨金福
作者单位:李明爱 (北京工业大学电子信息与控制工程学院,北京,100124) ; 张诚 (北京工业大学电子信息与控制工程学院,北京,100124) ; 杨金福 (北京工业大学电子信息与控制工程学院,北京,100124) ;
基金项目:北京市自然科学基金,北京市委组织部优秀人才培养项目
摘    要:
通过研究疲劳驾驶时脑电信号的特征,提出了一种基于独立分量分析(independent component analysis,ICA)的脑波疲劳状态判断方法.利用模拟驾驶系统,采用NT-9200动态脑电仪采集驾驶员在清醒和疲劳状态下(连续驾驶4h以上)的脑电信号,对采集的多导信号进行独立分量分析,去除EEG信号中的眼电、肌电及工频等干扰,经过快速傅里叶变换(fast fourier transform,FFT)后计算出脑波中多种功率谱密度,求得疲劳指数F.实验结果表明,在疲劳状态下的疲劳指数F明显高于清醒状态下的F.本文提出的脑波疲劳状态判断方法可有效用以判断驾驶员的疲劳程度.

关 键 词:脑电信号  疲劳驾驶  独立成分分析  疲劳指数  频谱分析

EEG-Based Method to Determine the Drowsiness Degree of EEG Signal
LI Mingai,ZHANG Cheng,YANG Jinfu. EEG-Based Method to Determine the Drowsiness Degree of EEG Signal[J]. Beijing Biomedical Engineering, 2011, 30(1): 57-61. DOI: 10.3969/j.issn.1002-3208.2011.01.11
Authors:LI Mingai  ZHANG Cheng  YANG Jinfu
Affiliation:(Institution of Artificial Intelligence and Robot, Beijing University of Technology, Beijing 100124)
Abstract:
The characteristic of electroencephalograph (EEG) signal in drowsy driving was researched. Based on independent component analysis (ICA) algorithm, a method of determining the drowsiness degree was proposed. In a simulated driving system, the EEG signals of subjects, in both sober and drowsy (driving continuously for more than four hours) states, were captured by EEG instrument of NT-9200. The multi channel signals were analyzed with ICA algorithm, and removed ocular electric, myoelectric and power frequency interferences, and power spectral densities were calculated after fast fourier transform (FFT) , so the fatigue index F was obtained at last. Experimental results show that the index F of drowsy state was significantly higher than the index F of sober state. The method presented in this paper can be used for determining the drowsiness degree from EEG signal effectually.
Keywords:electroencephalograph (EEG)  fatigue drive  independent component analysis (ICA)  fatigue index  spectrum analysis
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号