首页 | 本学科首页   官方微博 | 高级检索  
     


A single treatment of yttrium-90-labeled CHX-A"-C6.5 diabody inhibits the growth of established human tumor xenografts in immunodeficient mice
Authors:Adams Gregory P  Shaller Calvin C  Dadachova Ekaterina  Simmons Heidi H  Horak Eva M  Tesfaye Abohawariat  Klein-Szanto Andres J P  Marks James D  Brechbiel Martin W  Weiner Louis M
Affiliation:Divison of Medical Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA. gp_adams@fccc.edu
Abstract:
Antitumor diabody molecules are noncovalent single-chain Fv dimers that recapitulate the divalent binding properties of native IgG antibodies. Diabodies are capable of substantial accumulation in tumor xenografts expressing relevant antigens in immunodeficient mouse models. With a Mr of approximately 55,000, diabodies are rapidly cleared from the circulation, resulting in tumor-to-blood ratios that significantly exceed those achieved early after the administration of monoclonal antibodies. We have evaluated the therapeutic potential of the beta-emitting isotope yttrium-90 (t1/2, 64 hours) conjugated to the C6.5K-A diabody that specifically targets the HER2/neu human tumor-associated antigen. We have found that a single intravenous dose of 150 microCi (200 microg) 90Y-CHX-A"-C6.5K-A diabody substantially inhibits the growth rates of established MDA-361/DYT2 human breast tumor xenografts in athymic nude mice. In contrast, 300 microCi (300 microg) 90Y-CHX-A"-C6.5K-A diabody resulted in only a minor delay in the growth of SK-OV-3 human ovarian cancer xenografts. The maximum tolerated dose was also dependent on the tumor xenograft model used. These studies indicate that genetically engineered antitumor diabody molecules can be used as effective vehicles for radioimmunotherapy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号