首页 | 本学科首页   官方微博 | 高级检索  
     


Multiple sites of purinergic control of insulin secretion in mouse pancreatic beta-cells.
Authors:C R Poulsen  K Bokvist  H L Olsen  M H?y  K Capito  P Gilon  J Gromada
Affiliation:Department of Islet Cell Physiology, Islet Discovery Research, Novo Nordisk A/S, Bagsvaerd, Denmark.
Abstract:In mouse pancreatic beta-cells, extracellular ATP (0.1 mmol/l) effectively reduced glucose-induced insulin secretion. This inhibitory action resulted from a direct interference with the secretory machinery, and ATP suppressed depolarization-induced exocytosis by 60% as revealed by high-resolution capacitance measurements. Suppression of Ca2+-dependent exocytosis was mediated via binding to P2Y1 purinoceptors but was not associated with inhibition of the voltage-dependent Ca2+ currents or adenylate cyclase activity. Inhibition of exocytosis by ATP resulted from G-protein-dependent activation of the serine/threonine protein phosphatase calcineurin and was abolished by cyclosporin A and deltamethrin. In contrast to the direct inhibitory action on exocytosis, ATP reduced the whole-cell ATP-sensitive K+ (K(ATP)) current by 30% (via activation of cytosolic phospholipase A2), leading to membrane depolarization and stimulation of electrical activity. The stimulatory effect of ATP also involved mobilization of Ca2+ from thapsigargin-sensitive intracellular stores. We propose that the inhibitory action of ATP, by interacting with the secretory machinery at a level downstream to an elevation in [Ca2+]i, is important for autocrine regulation of insulin secretion in mouse beta-cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号