首页 | 本学科首页   官方微博 | 高级检索  
     


Rescue and regeneration of injured peripheral nerve axons by intrathecal insulin
Authors:Toth C  Brussee V  Martinez J A  McDonald D  Cunningham F A  Zochodne D W
Affiliation:Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Room 168, 3330 Hospital Drive, NW, Calgary, Alberta, Canada T2N 4N1.
Abstract:
Insulin peptide, acting through tyrosine kinase receptor pathways, contributes to nerve development or repair. In this work, we examined the direction, impact and repertoire of insulin signaling in vivo during peripheral nerve regeneration in rats. First, we demonstrated that insulin receptor is expressed on lumbar dorsal root ganglia neuronal perikarya using immunohistochemistry. Immunoblots and polymerase chain reactions confirmed the presence of both alpha and beta insulin receptor subunits in dorsal root ganglia. In vivo and in vitro assessment of dorsal root ganglion neurons showed preferential localization of insulin receptor to perikaryal sites. In vivo, intrathecal delivery of fluorescein isothiocyanate-labeled insulin identified localization around dorsal root ganglia neurons. The direction and impact of potential insulin signaling was evaluated by concurrently delivering insulin or carrier over a 2 week period using mini-osmotic pumps, either intrathecally, near nerve, or with both deliveries, following a selective sural nerve crush injury. Only intrathecal insulin increased the number and maturity of regenerating sensory sural nerve axons distal to the crush site. As well, only intrathecal insulin rescued retrograde loss of sural axons after crush. In a separate experiment, insulin also rescued retrograde loss and atrophy of deep peroneal, largely motor, axons post-injury. Intrathecal insulin increased the expression of calcitonin-gene-related peptide in regenerating sprouts, increased the number of visualized regenerating fiber clusters, and reduced downregulation of calcitonin-gene-related peptide in dorsal root ganglia neurons. Insulin delivered intrathecally does not appear to influence expression of insulin-like growth factor-1 at dorsal root ganglion neurons or near peripheral nerve injury, but was associated with upregulation of insulin receptor alpha subunit in dorsal root ganglia. Intrathecal insulin delivery was associated with greater recovery of thermal sensation and longer distances to stimulus response with the pinch test following sural nerve crush. Insulin signaling at neuron perikarya can drive distal sensory axon regrowth, rescue retrograde alterations of axons and alter axon peptide expression. Moreover, such actions are associated with upregulation of its own receptor.
Keywords:sural nerve   insulin   regeneration   CGRP
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号