Single mucosal immunization of recombinant adenovirus-based vaccine expressing F1 protein fragment induces protective mucosal immunity against respiratory syncytial virus infection |
| |
Authors: | Sol Kim Ji-Eun JangJae-Rang Yu Jun Chang |
| |
Affiliation: | Division of Life & Pharmaceutical Sciences, and the Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, 11-1 Dae-Hyun Dong, Seo-Dae-Mun Gu, Seoul 120-750, Republic of Korea |
| |
Abstract: | Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract disease in infancy and early childhood. Despite its importance as a pathogen, there is no licensed vaccine against RSV. The fusion (F) protein of RSV is a potentially important target for protective antiviral immune responses. Here, we studied the immune responses elicited by recombinant replication-deficient adenovirus (rAd)-based vaccines expressing the soluble F1 fragment of F protein (amino acids 155–524) in murine model. The expression of secreted F1 fragment by rAd was significantly increased by codon optimization. Strong mucosal IgA response was induced by single intranasal immunization of codon-optimized vaccine, rAd/F1co, but not by rAd/F1wt. A single intranasal immunization with rAd/F1co provided potent protection against subsequent RSV challenge. Interestingly, neither serum Ig nor T-cell response directed to F protein was detected in the rAd/F1co-immune mice, suggesting that protective immunity by rAd/F1co is mainly mediated through mucosal IgA induction. Indeed, co-delivery of cholera toxin B subunit significantly enhanced mucosal IgA responses by the optimized vaccine, which correlates with protective efficacy. Taken together, our data demonstrate that a single intranasal administration of rAd/F1co is sufficient for the protection and represents a promising prophylactic vaccination regimen against RSV infection. |
| |
Keywords: | Respiratory syncytial virus Fusion protein Recombinant adenovirus Mucosal immunity |
本文献已被 ScienceDirect 等数据库收录! |
|