首页 | 本学科首页   官方微博 | 高级检索  
     

非完整移动机器人的神经网络滑模自适应轨迹跟踪控制
引用本文:史先鹏,刘士荣,刘斐,李永刚. 非完整移动机器人的神经网络滑模自适应轨迹跟踪控制[J]. 医学教育探索, 2010, 0(5): 695-701
作者姓名:史先鹏  刘士荣  刘斐  李永刚
作者单位:华东理工大学自动化研究所,上海 200237;杭州电子科技大学自动化学院,杭州 310018;杭州电子科技大学自动化学院,杭州 310018;杭州电子科技大学自动化学院,杭州 310018;上海理工大学系统科学与工程系,上海 200093
基金项目:国家自然科学基金项目(60675043);浙江省科技计划基金项目(2007C21051)
摘    要:针对非完整移动机器人的轨迹跟踪控制问题,提出了一种鲁棒项系数自调整的神经网络滑模自适应控制策略。首先由反推法设计运动学控制器;其次,基于滑模控制设计动力学控制器,利用径向基神经网络(RBF)自适应逼近系统非线性不确定性上界,实现鲁棒项系数自调整,克服了传统滑模控制鲁棒项设计需要已知系统不确定性上界的缺陷,实现了速度跟踪。李亚普诺夫稳定性定理保证了闭环系统的稳定性及跟踪误差的渐近收敛。仿真结果进一步验证了所提方案的可行性。

关 键 词:机器人; 自调整; 不确定性上界; 神经网络; 滑模控制

Adaptive Neural Network Sliding Mode Trajectory Tracking Control for Non holonomic Wheeled Mobile Robots
SHI Xian-peng,LIU Shi-rong,LIU Fei and LI Yong-gang. Adaptive Neural Network Sliding Mode Trajectory Tracking Control for Non holonomic Wheeled Mobile Robots[J]. Researches in Medical Education, 2010, 0(5): 695-701
Authors:SHI Xian-peng  LIU Shi-rong  LIU Fei  LI Yong-gang
Affiliation:Institute of Automation, East China University of Science and Technology,Shanghai 200237,China;School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;Department of Systems Science and Engineering, University of Shanghai for Science andTechnology, Shanghai 200093, China
Abstract:An adaptive neural sliding mode control strategy with the self-tuning of robust item coefficients is proposed for the trajectory tracking of non-holonomic wheeled mobile robots. Firstly, a kinematic controller is designed by means of backstepping technique. Then, the dynamic controller is proposed based on sliding mode control method, in which the upper bound of the uncertainties is adaptively approximated by RBF neural networks and the robust item coefficients are self-tuned. Thus, the disadvantage of the traditional sliding mode controller, which needs to know the boundary of the system uncertainties in advance, is overcome. By using Lyapunov stability theorem, both the stability of closed-loop system and the asymptotical convergence of tracking errors are ensured. Simulation results further validate the effectiveness of the proposed controller.
Keywords:robots   self-tuning   upper boundary of uncertainties   neural networks   sliding mode control
点击此处可从《医学教育探索》浏览原始摘要信息
点击此处可从《医学教育探索》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号