首页 | 本学科首页   官方微博 | 高级检索  
     


Spatial resolution in fast time-resolved transillumination imaging: an indeterministic Monte Carlo approach
Authors:Behin-Ain S  van Doorn T  Patterson J R
Affiliation:Department of Physics and Mathematical Physics, University of Adelaide, SA, Australia.
Abstract:
The spatial resolution achievable in time-resolved optical transillumination imaging through a turbid (scattering and absorbing) medium has been reassessed theoretically. The temporal point spread function was constructed assuming a delta function input pulse, a approximately 50 mm thick medium and a small detector with zero risetime. Temporal profiles were derived from an indeterministic Monte Carlo simulation for different time scales. From the temporal point spread function (TPSF), an analytic edge response function from which the spatial resolution was determined was derived. Previous analytical methods for determining the spatial resolution are approximations for very short flight times (sub-100 ps time region). The results show that a spatial resolution of about two millimetres is possible under ideal signal-to-noise ratio conditions and with detector gate times of the order of ten picoseconds. If this predicted spatial resolution can be achieved in an imaging system, it may be possible to improve the diagnosis of breast tumours.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号