首页 | 本学科首页   官方微博 | 高级检索  
     


Accelerated premature stress-induced senescence of young annulus fibrosus cells of rats by high glucose-induced oxidative stress
Authors:Jong-Soo Park  Jong-Beom Park  In-Joo Park  Eun-Young Park
Affiliation:1. Department of Orthopedic Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 65-1 Kumho-dong, Uijeongbu-si, Kyunggi-do, Korea, 480-717
Abstract:

Purposes

Diabetes mellitus (DM) is thought to be an important aetiological factor in intervertebral disc degeneration. A glucose-mediated increase of oxidative stress is a major causative factor in development of diseases associated with DM. The aim of this study was to investigate the effect of high glucose on mitochondrial damage, oxidative stress and senescence of young annulus fibrosus (AF) cells.

Methods

AF cells were isolated from four-week-old young rats, cultured, and placed in either 10 % FBS (normal control) or 10 % FBS plus two different high glucose concentrations (0.1 M and 0.2 M) (experimental conditions) for one and three days. We identified and quantified the mitochondrial damage and reactive oxygen species (ROS) (oxidative stress). We also identified and quantified the occurrence of senescence and telomerase activity. Finally, the expressions of proteins were determined related to replicative senescence (p53-p21-pRB) and stress-induced senescence (p16-pRB).

Results

Two high glucoses enhanced the mitochondrial damage in young rat AF cells, which resulted in an excessive generation of ROS in a dose- and time-dependent manner for one and three days compared to normal control. Two high glucose concentrations increased the occurrence of senescence of young AF cells in a dose- and time-dependent manner. Telomerase activity declined in a dose- and time-dependent manner. Both high glucose treatments increased the expressions of p16 and pRB proteins in young rat AF cells for one and three days. However, compared to normal control, the expressions of p53 and p21 proteins were decreased in young rat AF cells treated with both high glucoses for one and three days.

Conclusions

The present study demonstrated that high glucose-induced oxidative stress accelerates premature stress-induced senescence in young rat AF cells in a dose- and time-dependent manner rather than replicative senescence. These results suggest that prevention of excessive generation of oxidative stress by strict blood glucose control could be important to prevent or to delay premature intervertebral disc degeneration in young patients with DM.
Keywords:Premature stress-induced senescence   Replicative senescence   Young annulus fibrosus cells   High glucose   Oxidative stress   Intervertebral disc degeneration
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号