首页 | 本学科首页   官方微博 | 高级检索  
     

基于EEG模糊相似性的癫痫发作预测
引用本文:李小俚,欧阳高翔,关新平,李岩. 基于EEG模糊相似性的癫痫发作预测[J]. 中国生物医学工程学报, 2006, 25(3): 346-350,381
作者姓名:李小俚  欧阳高翔  关新平  李岩
作者单位:燕山大学电气工程学院,秦皇岛,066004
基金项目:国家高技术研究发展计划(863计划)
摘    要:本研究提出基于EEG序列模糊相似性指数方法预测癫痫发作.首先,结合复自相关法和Cao法对EEG序列进行了相空间重构;然后,计算相关积分时用Gaussian函数代替Heavyside函数,克服了Heavyside函数的刚性边界问题,使得计算相似性指数更加准确和可靠;最后,分析大鼠癫痫EEG信号,检测癫痫发作前期状态.分析结果表明模糊相似性指数方法能够比动态相似性指数方法获得更长的预测时间和更低的错误预测率.

关 键 词:EEG信号  模糊相似性指数  癫痫发作  预测  相空间重构
文章编号:0258-8021(2006)03-0346-05
收稿时间:2004-08-16
修稿时间:2006-04-13

Epileptic Seizure Prediction using Fuzzy Similarity Measure on EEG Recordings
LI Xiao-Li,OUYANG Gao-Xiang,GUAN Xin-Ping,LI Yan. Epileptic Seizure Prediction using Fuzzy Similarity Measure on EEG Recordings[J]. Chinese Journal of Biomedical Engineering, 2006, 25(3): 346-350,381
Authors:LI Xiao-Li  OUYANG Gao-Xiang  GUAN Xin-Ping  LI Yan
Abstract:This paper proposes a fuzzy similarity method to predict epileptic seizures with electroencephalography(EEG).First,multiple-autocorrelation and Cao's method are employed to reconstruct a phase space of EEG recordings.Second,instead of Heavyside function is Gaussian function used in correlation integral for calculating a similarity index,so the crisp boundary of the Heavyside function is eliminated to make the similarity index is more accurate and reliable.Finally,the fuzzy similarity index is applied to indicate the preictal state of nine rats with EEG signals.The result shows that the fuzzy similarity index is better than dynamical similarity index in increasing anticipation time and decreasing false prediction rate for the prediction of epileptic seizure.
Keywords:EEG signals   fuzzy similarity index   epileptic seizure   prediction   phase space reconstruction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号