首页 | 本学科首页   官方微博 | 高级检索  
     


Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
Authors:Zaugg Kathrin  Yao Yi  Reilly Patrick T  Kannan Karuppiah  Kiarash Reza  Mason Jacqueline  Huang Ping  Sawyer Suzanne K  Fuerth Benjamin  Faubert Brandon  Kalliomäki Tuula  Elia Andrew  Luo Xunyi  Nadeem Vincent  Bungard David  Yalavarthi Sireesha  Growney Joseph D  Wakeham Andrew  Moolani Yasmin  Silvester Jennifer  Ten Annick You  Bakker Walbert  Tsuchihara Katsuya  Berger Shelley L  Hill Richard P  Jones Russell G  Tsao Ming  Robinson Murray O  Thompson Craig B  Pan Guohua  Mak Tak W
Affiliation:The Campbell Family Institute for Breast Cancer Research, University of Toronto, Toronto, Ontario, Canada.
Abstract:
Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined. Here we report that carnitine palmitoyltransferase 1C (CPT1C), a brain-specific metabolic enzyme, may participate in metabolic transformation. CPT1C expression correlates inversely with mammalian target of rapamycin (mTOR) pathway activation, contributes to rapamycin resistance in murine primary tumors, and is frequently up-regulated in human lung tumors. Tumor cells constitutively expressing CPT1C show increased fatty acid (FA) oxidation, ATP production, and resistance to glucose deprivation or hypoxia. Conversely, cancer cells lacking CPT1C produce less ATP and are more sensitive to metabolic stress. CPT1C depletion via siRNA suppresses xenograft tumor growth and metformin responsiveness in vivo. CPT1C can be induced by hypoxia or glucose deprivation and is regulated by AMPKα. Cpt1c-deficient murine embryonic stem (ES) cells show sensitivity to hypoxia and glucose deprivation and altered FA homeostasis. Our results indicate that cells can use a novel mechanism involving CPT1C and FA metabolism to protect against metabolic stress. CPT1C may thus be a new therapeutic target for the treatment of hypoxic tumors.
Keywords:CPT1C   fatty acid homeostasis   metabolic stress   rapamycin resistance   xenograft tumors
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号